Tutorial: Find and extract data

Learn how to find and extract features with the Map Viewer, ArcGIS APIs, and the spatial analysis service.

Vacant housing units within .25 miles (~.4km) of high schools.

Find analyses allow you to find feature data with a SQL or spatial query or to export feature data to create new feature data.

In this tutorial, you use the Find Existing Locations and Derive New Locations operations to determine which neighborhood areas have more vacant housing to live in within a quarter of a mile of high schools in San Francisco. You can perform the combine analyses either in Map Viewer or programmatically using the ArcGIS Python, ArcGIS REST JS, and ArcGIS REST APIs.

The analyses include:

  • Finding high schools within San Francisco (excluding Treasure Island and Yerba Buena Island).
  • Finding neighborhoods within a quarter mile (~.4 km) of a high school.
  • Identifying the census blocks within neighborhoods closest to a high school.
  • Styling the census blocks to identify the blocks with most vacant housing.

After performing the analyses, you will export the results to a KML file.

Prerequisites

Steps

Copy the web map

The tutorial web map contains predefined layers to use as the starting point for the analyses outlined in the steps below.

  1. Go to the Find and extract data tutorial web map and click Sign in.

  2. Verify that you have the following layers by toggling the visibility on and off:

    • Schools
    • Neighborhoods
    • Census blocks with housing data
  3. Click Save > Save As > Save Map to save a copy.

Create a feature layer with high schools

The Schools hosted feature layer contains 445 schools in San Francisco, including independent, private, and public schools. Use the Find Existing Locations operation to return only high schools (grades 9-12) in San Francisco.

Steps to use the Map ViewerSteps to use ArcGIS Python, REST JS, and REST APIs
  1. In the Settings (light) toolbar, click Analysis > Tools > Find by Attributes and Location.

  2. Click + Build new query > Attribute Expression > Next.

  3. Add the following parameters:

    • Find features from: Schools
    • Where: All of the following are true
    • Category
    • equals
    • USD Grades 9-12
  4. Click Add.

  5. Set the Output name to: San Francisco High Schools.

  6. Click Estimate credits. The estimated cost for ArcGIS Location Platform is USD $.04 and ArcGIS Online is .445 credits.

  7. Click Run.

  8. When the analysis completes, Select the San Francisco High Schools layer > Show table to see the features returned.

  1. Implement authentication with the following privileges:

    • Spatial Analysis > Feature Analysis
  2. Define the parameters.

  3. Perform the operation.

    Note: This is a long transaction managed with a job request.

  4. Handle the results.

APIs

ArcGIS API for PythonArcGIS API for PythonArcGIS REST JS
Use dark colors for code blocksCopy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

from arcgis.gis import GIS
from arcgis.features.analysis import find_existing_locations

portal = GIS(username="<USERNAME>", password="<PASSWORD>")

sf_schools = "https://services3.arcgis.com/GVgbJbqm8hXASVYi/arcgis/rest/services/San_Francisco_Schools/FeatureServer/0"

results = find_existing_locations(
    input_layers=[sf_schools],
    expressions=[
        {"operator": "", "layer": 0, "where": "Category = 'USD Grades 9-12'"}
    ],
    context={
    "extent": {
        "xmin": -13647972.49107637,
        "ymin": 4536058.802455983,
        "xmax": -13611053.406414682,
        "ymax": 4559486.751625358,
        "spatialReference": {"wkid": 102100, "latestWkid": 3857},
    }
  },

)

result_features = results.query()

print(
    f"There are {len(result_features.features)} high schools.",
)
map_widget = portal.map()
map_widget.add_layer(result_features)
map_widget.zoom_to_layer(result_features)
map_widget

Service requests

Request
HTTPHTTPcURL
Use dark colors for code blocksCopy
1
2
3
4
5
POST arcgis.com/sharing/rest/portals/self HTTP/1.1
Content-Type: application/x-www-form-urlencoded

&f=json
&token=<ACCESS_TOKEN>
Response (JSON)
Use dark colors for code blocksCopy
1
2
3
4
5
6
7
8
9
10
11
{
  "helperServices": {
    // Other parameters
    "analysis": {
      "url": "https://<YOUR_ANALYSIS_SERVICE>/arcgis/rest/services/tasks/GPServer"
    },
    "geoenrichment": {
      "url": "https://geoenrich.arcgis.com/arcgis/rest/services/World/GeoenrichmentServer"
    }
  }
}

The results contain high schools in the San Francisco area.

Derive new neighborhood areas near a high school

The Neighborhoods hosted feature layer contains the boundaries for 92 neighborhoods in San Francisco. To find the areas within a neighborhood that are closest to the high schools found in the previous analysis, use the Derive New Locations operation.

Steps to use the Map ViewerSteps to use ArcGIS Python, REST JS, and REST APIs

Construct the spatial query

  1. In the Settings (light) toolbar, click Analysis > Tools > Find by Attributes and Location.
  2. Click + Build new query > Spatial expression > Next to create the following query:
    • **Find features from **: Neighborhoods
    • Where: All of the following are true
    • Click + Spatial expression
    • within a distance of: .25 Miles
    • of San Francisco High Schools
  3. Click Add
  4. Set Include only the parts of features the meet the criteria to true.
  5. Set the Output name to: Neighborhood portions near high schools.
  6. Click Estimate credits. The estimated cost for ArcGIS Location Platform is USD $0.01 and ArcGIS Online is 0.11 credits.
  7. Click Run to create the new layer.

Style neighborhoods

To differentiate between the neighborhoods, style Neighborhood portions near high schools with a unique symbol.

  1. Select the Neighborhood portions near high schools layer and click Style in the Settings (light) toolbar.

  2. Click + Field > and select the nbrhood field then click Add.

  3. Click Style options under Types (Unique symbols) style.

  4. In Style options, click the ellipsis next to the Other style and choose move up.

  5. Click Done twice to close the styles pane.

The neighborhoods should all have unique colors.

  1. Implement authentication with the following privileges:

    • Spatial Analysis > Feature Analysis
  2. Define the parameters.

  3. Perform the operation.

    Note: This is a long transaction managed with a job request.

  4. Handle the results.

APIs

ArcGIS API for PythonArcGIS API for PythonArcGIS REST JS
Expand
Use dark colors for code blocksCopy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from arcgis.gis import GIS
from arcgis.features.analysis import derive_new_locations

portal = GIS(username="<USERNAME>", password="<PASSWORD>")

highschools = "https://services3.arcgis.com/GVgbJbqm8hXASVYi/arcgis/rest/services/San_Francisco_High_Schools/FeatureServer/0"

neighborhoods = "https://services3.arcgis.com/GVgbJbqm8hXASVYi/arcgis/rest/services/SF_Neighborhoods/FeatureServer/0"

results = derive_new_locations(
    input_layers=[neighborhoods, highschools],
    expressions=[
        {
            "operator": "",
            "layer": 0,
            "selectingLayer": 1,
            "spatialRel": "withinDistance",
            "distance": 0.25,
            "units": "Miles",
        }
    ],
)

result_features = results.query()

print(
    f"There are {len(result_features.features)} neighborhood sections.",
)
map_widget = portal.map()
map_widget.add_layer(result_features)
map_widget.zoom_to_layer(result_features)
map_widget

Service requests

Request
HTTPHTTPcURL
Use dark colors for code blocksCopy
1
2
3
4
5
POST arcgis.com/sharing/rest/portals/self HTTP/1.1
Content-Type: application/x-www-form-urlencoded

&f=json
&token=<ACCESS_TOKEN>
Response (JSON)
Use dark colors for code blocksCopy
1
2
3
4
5
6
7
8
9
10
11
{
  "helperServices": {
    // Other parameters
    "analysis": {
      "url": "https://<YOUR_ANALYSIS_SERVICE>/arcgis/rest/services/tasks/GPServer"
    },
    "geoenrichment": {
      "url": "https://geoenrich.arcgis.com/arcgis/rest/services/World/GeoenrichmentServer"
    }
  }
}

Style the layer

To learn how to style a feature layer, go to Visualization.

Use dark colors for code blocksCopy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
{
  "renderer": {
    "visualVariables": [
      {
        "type": "sizeInfo",
        "target": "outline",
        "expression": "view.scale",
        "valueExpression": "$view.scale",
        "stops": [
          {

The resulting layer contains neighborhoods within a .25 mile buffer of the schools.

Find census blocks completely within neighborhood portions

Census blocks are statistical areas bounded by roads, property lines, and other features. In cities, they can correspond to city blocks. The Census blocks with housing data hosted feature layer contains 7,823 features with attribute informtion about the total number of vacant housing units per block. Use the Derive New Locations tool to find which census blocks are completely within the .25 mile buffer of neighborhood sections.

Steps to use the Map ViewerSteps to use ArcGIS Python, REST JS, and REST APIs

Construct the spatial query

  1. In the Settings (light) toolbar, click Analysis.

  2. In the panel, click Find Locations > Find by Attributes and Location.

  3. Click + Build new query > Spatial expression > Next.

  4. In the Query builder set the following parameters:

    • Find features from: Census blocks with housing data
    • Where: All of the following are true
    • Click + Spatial expression >
    • Completely within
    • Neighborhood portions near high schools
  5. Click Add

  6. Set Include only the parts of features that meet the criteria to true (checked).

  7. Set the Output name: Census blocks within neighborhood portions.

  8. Click Estimate credits. The estimated cost for ArcGIS Location Platform is USD $0.78 and ArcGIS Online is 7.86 credits.

  9. Click Run to create the new layer.

Style the resulting layer

The Census blocks within neighborhood portions layer contains attributes, such as the total number of rentals, owner-occupied housing, and total units available. Style the feature layer to visualize the amount of housing units available per census block.

  1. Ensure the Census blocks within neighborhood portions layer is selected then click Styles in the Settings (light) toolbar.

  2. Click + Field then select the 2020 Vacant Housing Units field and click Add.

  3. Select Counts and Amounts (color) > Style Options and click the pencil next to Symbol style.

  4. Under Colors choose a yellow to red color ramp.

  5. Click Done > Done to close the style pane.

  6. In the Contents (dark) toolbar, click Save and open > Save to save your web map.

  1. Implement authentication with the following privileges:

    • Spatial Analysis > Feature Analysis
  2. Define the parameters.

  3. Perform the operation.

    Note: This is a long transaction managed with a job request.

  4. Handle the results.

APIs

ArcGIS API for PythonArcGIS API for PythonArcGIS REST JS
Expand
Use dark colors for code blocksCopy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from arcgis.gis import GIS
from arcgis.features.analysis import find_existing_locations

portal = GIS(username="<USERNAME>", password="<PASSWORD>")

census_blocks = "https://services3.arcgis.com/GVgbJbqm8hXASVYi/arcgis/rest/services/Census_blocks_with_housing_data/FeatureServer/0"

neighborhood_sections = "https://services3.arcgis.com/GVgbJbqm8hXASVYi/arcgis/rest/services/Neighborhood_portions_near_high_schools/FeatureServer/0"

results = find_existing_locations(
    input_layers=[census_blocks, neighborhood_sections],
    expressions=[
        {
            "operator": "",
            "layer": 0,
            "selectingLayer": 1,
            "spatialRel": "within"
        }
    ],
    context={
        "extent": {
            "xmin": -13647972.49107637,
            "ymin": 4536058.802455983,
            "xmax": -13611053.406414682,
            "ymax": 4559486.751625358,
            "spatialReference": {"wkid": 102100, "latestWkid": 3857},
        }
    },

)

result_features = results.query()

print(
    f"There are {len(result_features.features)} census blocks.",
)
map_widget = portal.map()
map_widget.add_layer(result_features)
map_widget.zoom_to_layer(result_features)
map_widget

Service requests

Request
HTTPHTTPcURL
Use dark colors for code blocksCopy
1
2
3
4
5
POST arcgis.com/sharing/rest/portals/self HTTP/1.1
Content-Type: application/x-www-form-urlencoded

&f=json
&token=<ACCESS_TOKEN>
Response (JSON)
Use dark colors for code blocksCopy
1
2
3
4
5
6
7
8
9
10
11
{
  "helperServices": {
    // Other parameters
    "analysis": {
      "url": "https://<YOUR_ANALYSIS_SERVICE>/arcgis/rest/services/tasks/GPServer"
    },
    "geoenrichment": {
      "url": "https://geoenrich.arcgis.com/arcgis/rest/services/World/GeoenrichmentServer"
    }
  }
}

Style the layer

To learn how to style a feature layer, go to Visualization.

Use dark colors for code blocksCopy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
{
  "renderer": {
    "visualVariables": [
      {
        "type": "colorInfo",
        "field": "VACANT_CY",
        "valueExpression": null,
        "stops": [
          {
            "value": 0,

The resulting layer should look something like this

Export as KML

You can use the Extract Data operation to export your own or a shared layer, if the owner of the layer has enabled exporting. You can export a layer into formats such as: CSV, File Geodatabase, Shapefile, and KML. Use the operation to export the Derived census blocks hosted feature layer as a KML file.

Steps to use the Map ViewerSteps to use ArcGIS Python, REST JS, and REST APIs
  1. In the Settings (light) toolbar, click Analysis > Tools > Extract Data.

  2. Set the following:

    • Input layers: Census blocks within neighborhood portions.
    • Extent area: Census blocks within neighborhood portions.
  3. Select KML from the dropdown under Output data format.

  4. Set Output name to: Extract census blocks.

  5. Click Estimate credits. The estimated cost for ArcGIS Location Platform is USD $0.02 and ArcGIS Online is 0.23 credits.

  6. Click Run.

  7. Locate the saved KML file in your folder.

  8. Click the Extract census blocks file.

  9. On the right of the Overview page, click Download.

  1. Implement authentication with the following privileges:

    • Spatial Analysis > Feature Analysis
  2. Define the parameters.

  3. Perform the operation.

    Note: This is a long transaction managed with a job request.

  4. Handle the results.

APIs

ArcGIS API for PythonArcGIS API for PythonArcGIS REST JS
Expand
Use dark colors for code blocksCopy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from arcgis import GIS
from arcgis.features.analysis import extract_data

portal = GIS(username="<USERNAME>", password="<PASSWORD>")

census_blocks_within_neighborhoods = "https://services3.arcgis.com/GVgbJbqm8hXASVYi/arcgis/rest/services/census_blocks_completely_within_neighborhood_portions/FeatureServer/0"

results = extract_data(
    input_layers=[census_blocks_within_neighborhoods],
    extent=neighborhoods,
    clip=False,
    data_format="KML",
    output_name={"title": "<ITEM_NAME>"}
)

print(f"The new item ID is: {results.itemid}")

Service requests

Request
HTTPHTTPcURL
Use dark colors for code blocksCopy
1
2
3
4
5
POST arcgis.com/sharing/rest/portals/self HTTP/1.1
Content-Type: application/x-www-form-urlencoded

&f=json
&token=<ACCESS_TOKEN>
Response (JSON)
Use dark colors for code blocksCopy
1
2
3
4
5
6
7
8
9
10
11
{
  "helperServices": {
    // Other parameters
    "analysis": {
      "url": "https://<YOUR_ANALYSIS_SERVICE>/arcgis/rest/services/tasks/GPServer"
    },
    "geoenrichment": {
      "url": "https://geoenrich.arcgis.com/arcgis/rest/services/World/GeoenrichmentServer"
    }
  }
}

Go to the folder in which you saved the file to verify that it is there.

Exported data

Display the KML file in Google Earth

To support interoperability between different services, you can extract and convert data to different formats. KML files can be used in a Google Earth project. Upload the KML file to Google Earth to see the census blocks from the exported file.

  1. Go to Google Earth.

  2. In the left panel click New > Local KML file.

  3. Click Import and browse to the file you downloaded in the previous step.

You will be zoomed in to San Francisco and see the census blocks that were exported from the Census blocks within neighborhood portions. However, you will not see the layer styles that were applied earlier.

Exported data

What's next?

You performed a series of find analyses to identify the areas of census blocks that have vacant housing units near a high school. Your web map should look something like this.

Learn how to use additional tools, APIs, and location services in these tutorials:

Summarize data

Aggregate and summarize features using summarize analysis operations.


Discover patterns in data

Find patterns and trends in data using spatial analysis operations.


Combine data

Overlay, join, and dissolve features using combine analysis operations.


Your browser is no longer supported. Please upgrade your browser for the best experience. See our browser deprecation post for more details.