Multivariate data visualization

Weather stations styled with a simple renderer and visual variables to display wind speed, direction, and air temperature

What is multivariate data visualization?

Multivariate data visualization involves visualizing more than one data value in a single renderer. This is done for many reasons, including to:

  1. View the relationship between two or more variables
  2. Compare or contrast the difference between two variables
  3. View spatial patterns that may not be related among several variables at one time.

How multivariate data visualizations work

Multivariate visualizations can be done by adding more than one visual variable to a simple renderer. Common combinations include the following:

  1. Color and size
  2. Size and rotation
  3. Size, rotation, and color

You can create multivariate visualizations using many other combinations of visual variables as well, including opacity.

Examples

Color and size

Color and size are typically used to show the relationship between two variables or to show a rate with a color variable, and the magnitude of a variable using a size variable.

The following example visualizes how humidity influences the heat index, or the "feels like" temperature using color and size.

  • color is used to visualize relative humidity
  • size is used to visualize the difference between the heat index (feels like temperature) and the measured air temperature at a weather station.
ArcGIS JS API
Expand
Use dark colors for code blocksCopy
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
          visualVariables: [
            {
              type: "size",
              valueExpression: "$feature.HEAT_INDEX - $feature.TEMP",
              valueExpressionTitle: "Difference in 'feels like' temperature from air temperature",
              minDataValue: 0,
              maxDataValue: 30,
              minSize: 4,
              maxSize: 24
            }, {
              type: "color",
              field: "R_HUMIDITY",
              stops: [
                { value: 20, color: "#ffefdc" },
                { value: 35, color: "#edac90" },
                { value: 50, color: "#da6843" },
                { value: 65, color: "#a03523" },
                { value: 80, color: "#660202" }
              ]
            }
          ]
Expand

Size and rotation

Size variables are good for visualization total counts or magnitudes. Rotation and size are commonly paired together to map weather data, such as wind. Rotation indicates the direction of flow, while size indicates the wind speed.

ArcGIS JS API
Expand
Use dark colors for code blocksCopy
58 59 60 61 62 63 64 65 66 67 68 69 70 71
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
          visualVariables: [
            {
              type: "size",
              field: "WIND_SPEED",
              minDataValue: 5,
              maxDataValue: 60,
              minSize: 4,
              maxSize: 24
            }, {
              type: "rotation",
              field: "WIND_DIRECT",
              rotationType: "geographic"
            }
          ]
Expand

Size, rotation, and color

In rare cases, you can effectively use three visual variables together. In the example below, we add a color variable to the wind visualization to represent air temperature. This visualization allows the end user to view patterns of wind and temperature together in one visual.

  • Size - wind speed
  • Rotation - wind direction
  • Color - air temperature
ArcGIS JS API
Expand
Use dark colors for code blocksCopy
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
          visualVariables: [
            {
              type: "rotation",
              field: "WIND_DIRECT",
              rotationType: "geographic"
            },
            {
              type: "size",
              field: "WIND_SPEED",
              minDataValue: 5,
              maxDataValue: 60,
              minSize: {
                type: "size",
                valueExpression: "$view.scale",
                // adjust the min size by scale
                stops: [
                  { value: referenceScale, size: 8 },
                  { value: referenceScale*2, size: 6 },
                  { value: referenceScale*4, size: 4 },
                  { value: referenceScale*8, size: 2 }
                ]
              },
              maxSize: {
                type: "size",
                valueExpression: "$view.scale",
                // adjust the max size by scale
                stops: [
                  { value: referenceScale, size: 40 },
                  { value: referenceScale*2, size: 30 },
                  { value: referenceScale*4, size: 20 },
                  { value: referenceScale*8, size: 10 }
                ]
              }
            },
            {
              type: "color",
              field: "TEMP",
              stops: [
                { value: 20, color: "#2b83ba" },
                { value: 35, color: "#abdda4" },
                { value: 50, color: "#ffffbf" },
                { value: 65, color: "#fdae61" },
                { value: 80, color: "#d7191c" }
              ]
            }
          ]
Expand

Best practices

Using more than one visual variable adds complexity to the visualization. This makes it more difficult for the end user to understand the message. You should always carefully consider whether using multiple variables in one view is preferable to displaying separate views of the data.

Other multivariate styles

You don't need visual variables to create multivariate visualizations. The following guide pages demonstrate how to create multivariate visualizations with other renderer types.

Predominance

A predominance visualization colors features based on the predominant value among a set of competing or similar numeric attributes.

Dot density

Learn how to use dot density to measure the density of a numeric attribute or set of comparable variables.

Charts

Learn how to use charts to visualize the distribution of multiple numeric variables in a layer.

Relationship

Learn how to use a relationship renderer to explore the relationship between two numeric data attributes.

Image preview of related sample Create a custom visualization using Arcade

Create a custom visualization using Arcade

Create a custom visualization using Arcade

Image preview of related sample Thematic multivariate visualization (3D)

Thematic multivariate visualization (3D)

Thematic multivariate visualization (3D)

Image preview of related sample Thematic visualization with realistic 3D symbols

Thematic visualization with realistic 3D symbols

Thematic visualization with realistic 3D symbols

Image preview of related sample Scale feature sizes based on real world sizes (2D)

Scale feature sizes based on real world sizes (2D)

Scale feature sizes based on real world sizes (2D)

Image preview of related sample Point clustering with visual variables

Point clustering with visual variables

Point clustering with visual variables

API support

2D3DArcadePointsLinesPolygonsMesh
Unique types
Class breaks
Visual variables1
Time
Multivariate
Predominance
Dot density
Charts
Relationship
Smart Mapping2333
Full supportPartial supportNo support
  • 1. Color only
  • 2. Size variable creators only supported for points
  • 3. Size variable creators not supported in 3D

Your browser is no longer supported. Please upgrade your browser for the best experience. See our browser deprecation post for more details.