Show a line of sight between two moving objects.
Use case
A line of sight between GeoElement
s (i.e. observer and target) will not remain constant whilst one or both are on the move.
A GeoElementLineOfSight
is therefore useful in cases where visibility between two GeoElement
s requires monitoring over a period of time in a partially obstructed field of view (such as buildings in a city).
How to use the sample
A line of sight will display between a point on the Empire State Building (observer) and a taxi (target). The taxi will drive around a block and the line of sight should automatically update. The taxi will be highlighted when it is visible. You can change the observer height with the slider to see how it affects the target's visibility.
How it works
- Instantiate an
AnalysisOverlay
and add it to theSceneView
's analysis overlays collection. - Instantiate a
GeoElementLineOfSight
, passing in observer and targetGeoElement
s (features or graphics). Add the line of sight to the analysis overlay's analyses collection. - To get the target visibility when it changes, react to the target visibility changing on the
GeoElementLineOfSight
instance.
Relevant API
- AnalysisOverlay
- GeoElementLineOfSight
- LineOfSight.TargetVisibility
Offline data
This sample downloads the following items from ArcGIS Online automatically:
Tags
3D, line of sight, visibility, visibility analysis
Sample Code
// Copyright 2018 Esri.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License.
// You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
// language governing permissions and limitations under the License.
using ArcGIS.Samples.Managers;
using Esri.ArcGISRuntime.Geometry;
using Esri.ArcGISRuntime.Mapping;
using Esri.ArcGISRuntime.Symbology;
using Esri.ArcGISRuntime.UI;
using Esri.ArcGISRuntime.UI.GeoAnalysis;
using Microsoft.UI.Xaml;
using System;
using System.Drawing;
using System.Threading.Tasks;
namespace ArcGIS.WinUI.Samples.LineOfSightGeoElement
{
[ArcGIS.Samples.Shared.Attributes.Sample(
name: "Line of sight (geoelement)",
category: "Analysis",
description: "Show a line of sight between two moving objects.",
instructions: "A line of sight will display between a point on the Empire State Building (observer) and a taxi (target).",
tags: new[] { "3D", "line of sight", "visibility", "visibility analysis" })]
[ArcGIS.Samples.Shared.Attributes.OfflineData("3af5cfec0fd24dac8d88aea679027cb9")]
public partial class LineOfSightGeoElement
{
// URL of the elevation service - provides elevation component of the scene.
private readonly Uri _elevationUri = new Uri("https://elevation3d.arcgis.com/arcgis/rest/services/WorldElevation3D/Terrain3D/ImageServer");
// URL of the building service - provides building models.
private readonly Uri _buildingsUri = new Uri("https://tiles.arcgis.com/tiles/z2tnIkrLQ2BRzr6P/arcgis/rest/services/Buildings_NewYork_v18/SceneServer/layers/0");
// Starting point of the observation point.
private readonly MapPoint _observerPoint = new MapPoint(-73.984988, 40.748131, 20, SpatialReferences.Wgs84);
// Graphic to represent the observation point.
private Graphic _observerGraphic;
// Graphic to represent the observed target.
private Graphic _taxiGraphic;
// Line of Sight Analysis.
private GeoElementLineOfSight _geoLine;
// For taxi animation - four points in a loop.
private readonly MapPoint[] _points = {
new MapPoint(-73.984513, 40.748469, SpatialReferences.Wgs84),
new MapPoint(-73.985068, 40.747786, SpatialReferences.Wgs84),
new MapPoint(-73.983452, 40.747091, SpatialReferences.Wgs84),
new MapPoint(-73.982961, 40.747762, SpatialReferences.Wgs84)
};
// For taxi animation - tracks animation state.
private int _pointIndex = 0;
private int _frameIndex = 0;
private const int FrameMax = 150;
public LineOfSightGeoElement()
{
InitializeComponent();
// Setup the control references and execute initialization.
_ = Initialize();
}
private async Task Initialize()
{
// Create scene.
Scene myScene = new Scene(BasemapStyle.ArcGISImagery)
{
InitialViewpoint = new Viewpoint(_observerPoint, 1600)
};
// Create the elevation source.
ElevationSource myElevationSource = new ArcGISTiledElevationSource(_elevationUri);
// Add the elevation source to the scene.
myScene.BaseSurface.ElevationSources.Add(myElevationSource);
// Create the building scene layer.
ArcGISSceneLayer mySceneLayer = new ArcGISSceneLayer(_buildingsUri);
// Add the building layer to the scene.
myScene.OperationalLayers.Add(mySceneLayer);
// Add the observer to the scene.
// Create a graphics overlay with relative surface placement; relative surface placement allows the Z position of the observation point to be adjusted.
GraphicsOverlay overlay = new GraphicsOverlay() { SceneProperties = new LayerSceneProperties(SurfacePlacement.Relative) };
// Create the symbol that will symbolize the observation point.
SimpleMarkerSceneSymbol symbol = new SimpleMarkerSceneSymbol(SimpleMarkerSceneSymbolStyle.Sphere, Color.Red, 10, 10, 10, SceneSymbolAnchorPosition.Bottom);
// Create the observation point graphic from the point and symbol.
_observerGraphic = new Graphic(_observerPoint, symbol);
// Add the observer to the overlay.
overlay.Graphics.Add(_observerGraphic);
// Add the overlay to the scene.
MySceneView.GraphicsOverlays.Add(overlay);
try
{
// Add the taxi to the scene.
// Create the model symbol for the taxi.
ModelSceneSymbol taxiSymbol = await ModelSceneSymbol.CreateAsync(new Uri(DataManager.GetDataFolder("3af5cfec0fd24dac8d88aea679027cb9", "dolmus.3ds")));
// Set the anchor position for the mode; ensures that the model appears above the ground.
taxiSymbol.AnchorPosition = SceneSymbolAnchorPosition.Bottom;
// Create the graphic from the taxi starting point and the symbol.
_taxiGraphic = new Graphic(_points[0], taxiSymbol);
// Add the taxi graphic to the overlay.
overlay.Graphics.Add(_taxiGraphic);
// Create GeoElement Line of sight analysis (taxi to building).
// Create the analysis.
_geoLine = new GeoElementLineOfSight(_observerGraphic, _taxiGraphic)
{
// Apply an offset to the target. This helps avoid some false negatives.
TargetOffsetZ = 2
};
// Create the analysis overlay.
AnalysisOverlay myAnalysisOverlay = new AnalysisOverlay();
// Add the analysis to the overlay.
myAnalysisOverlay.Analyses.Add(_geoLine);
// Add the analysis overlay to the scene.
MySceneView.AnalysisOverlays.Add(myAnalysisOverlay);
// Create a timer; this will enable animating the taxi.
DispatcherTimer animationTimer = new DispatcherTimer()
{
Interval = new TimeSpan(0, 0, 0, 0, 60)
};
// Move the taxi every time the timer expires.
animationTimer.Tick += AnimationTimer_Tick;
// Start the timer.
animationTimer.Start();
// Subscribe to TargetVisible events; allows for updating the UI and selecting the taxi when it is visible.
_geoLine.TargetVisibilityChanged += Geoline_TargetVisibilityChanged;
// Add the scene to the view.
MySceneView.Scene = myScene;
}
catch (Exception e)
{
await new MessageDialog2(e.ToString(), "Error").ShowAsync();
}
}
private void AnimationTimer_Tick(object sender, object e)
{
// Note: the contents of this function are solely related to animating the taxi.
// Increment the frame counter.
_frameIndex++;
// Reset the frame counter once one segment of the path has been traveled.
if (_frameIndex == FrameMax)
{
_frameIndex = 0;
// Start navigating toward the next point.
_pointIndex++;
// Restart if finished circuit.
if (_pointIndex == _points.Length)
{
_pointIndex = 0;
}
}
// Get the point the taxi is traveling from.
MapPoint starting = _points[_pointIndex];
// Get the point the taxi is traveling to.
MapPoint ending = _points[(_pointIndex + 1) % _points.Length];
// Calculate the progress based on the current frame.
double progress = _frameIndex / (double)FrameMax;
// Calculate the position of the taxi when it is {progress}% of the way through.
MapPoint intermediatePoint = InterpolatedPoint(starting, ending, progress);
// Update the taxi geometry.
_taxiGraphic.Geometry = intermediatePoint;
// Update the taxi rotation.
GeodeticDistanceResult distance = starting.DistanceGeodetic(ending, LinearUnits.Meters, AngularUnits.Degrees, GeodeticCurveType.Geodesic);
((ModelSceneSymbol)_taxiGraphic.Symbol).Heading = distance.Azimuth1;
}
private static MapPoint InterpolatedPoint(MapPoint firstPoint, MapPoint secondPoint, double progress)
{
// This function returns a MapPoint that is the result of traveling {progress}% of the way from {firstPoint} to {secondPoint}.
// Get the difference between the two points.
MapPoint difference = new MapPoint(secondPoint.X - firstPoint.X, secondPoint.Y - firstPoint.Y, secondPoint.Z - firstPoint.Z, SpatialReferences.Wgs84);
// Scale the difference by the progress towards the destination.
MapPoint scaled = new MapPoint(difference.X * progress, difference.Y * progress, difference.Z * progress);
// Add the scaled progress to the starting point.
return new MapPoint(firstPoint.X + scaled.X, firstPoint.Y + scaled.Y, firstPoint.Z + scaled.Z);
}
private void Geoline_TargetVisibilityChanged(object sender, EventArgs e)
{
// This is needed because Runtime delivers notifications from a different thread that doesn't have access to UI controls.
DispatcherQueue.TryEnqueue(Microsoft.UI.Dispatching.DispatcherQueuePriority.Normal, UpdateUiAndSelection);
}
private void UpdateUiAndSelection()
{
switch (_geoLine.TargetVisibility)
{
case LineOfSightTargetVisibility.Obstructed:
StatusLabel.Text = "Status: Obstructed";
_taxiGraphic.IsSelected = false;
break;
case LineOfSightTargetVisibility.Visible:
StatusLabel.Text = "Status: Visible";
_taxiGraphic.IsSelected = true;
break;
default:
case LineOfSightTargetVisibility.Unknown:
StatusLabel.Text = "Status: Unknown";
_taxiGraphic.IsSelected = false;
break;
}
}
private void HeightSlider_ValueChanged(object sender, Microsoft.UI.Xaml.Controls.Primitives.RangeBaseValueChangedEventArgs e)
{
// Update the height of the observer based on the slider value.
// Constrain the min and max to 20 and 150 units.
const double minHeight = 20;
const double maxHeight = 150;
// Scale the slider value; its default range is 0-100.
double value = e.NewValue / 100;
// Get the current point.
MapPoint oldPoint = (MapPoint)_observerGraphic.Geometry;
// Create a new point with the same (x,y) but updated z.
MapPoint newPoint = new MapPoint(oldPoint.X, oldPoint.Y, (maxHeight - minHeight) * value + minHeight);
// Apply the updated geometry to the observer point.
_observerGraphic.Geometry = newPoint;
}
}
}