Use the travel cost matrix service to create an origin-destination (OD) cost matrix from multiple origins to multiple destinations. A travel cost matrix is a table that contains the cost, such as the travel time or travel distance, from every origin to every destination. It also ranks the destinations that each origin connects to in ascending order based on the minimum cost required to travel from that origin to each destination. When generating a travel cost matrix, you can specify the maximum number of destinations to find for each origin and the maximum time or distance to travel when searching for destinations.
The results from the travel cost matrix service often become input for other spatial analyses when the cost to travel on the street network is more appropriate than straight-line cost. For example, predicting the movement of people in a city is better modeled with costs based on street networks, since people tend to travel on roads and pedestrian paths.
The travel time, distance, or both for each origin-destination pair is stored in the output matrix (default) or as part of the attributes of the output lines, which can have no shapes or a straight-line shape. Even though the lines are straight, they always store the travel time and travel distance based on the street network, not based on Euclidean distance.
Request URL
The Travel cost matrix service supports direct request and job request. You can choose a request type based on the size of the problem you are trying to solve.
To learn more about the job request, see Job request documentation.
You can make a direct request to the Travel cost matrix service using the following form:
https
Request parameters
The origin-destination cost matrix request takes the parameters listed below. The required parameters are origins
, destinations
, token
, and f
. The optional parameters have default values that are used when not specified in the request.
Parameter | Description |
---|---|
(Required) | Specifies the starting points from which to travel to the destinations. Syntax: |
(Required) | Specifies the ending point locations to travel to from the origins. Syntax: |
(Required) | Provide the identity of a user that has the permissions to access the service. |
(Required) | Specify the response format. Values: |
(Optional) | Choose the mode of transportation for the analysis. Value: JSON object |
(Optional) | Specify the travel time or travel distance value at which to stop searching for destinations. The default value is |
(Optional) | Specify the number of destinations to find per origin. The default value is |
(Optional) | Specify the type of output returned by the service. The default value is Values: |
(Optional) | The time and date to depart from the origins. You can also specify a value of |
(Optional) | Specify the time zone or zones of the The default value is Values: |
(Optional) | Specify whether hierarchy should be used when finding the shortest paths. The default value is Values: |
(Optional) | Restrict or permit the route from making U-turns at junctions. The default value is Values: |
(Optional) | Specify the impedance. The default value is Values: |
(Optional) | Specify whether the service should accumulate values other than the value specified for The parameter value should be specified as a comma-separated list of names. The parameter values are the same as the
Values: |
(Optional) | Specify which restrictions should be honored by the service. The default values are demonstrated in the example below:
For a complete list of values, see the restrictionAttributeNames section below. |
(Optional) | Specify additional values required by an attribute or restriction. For a complete list of accepted values, see the attributeParameterValues section below. |
(Optional) | Specify one or more points that act as temporary restrictions or represent additional time or distance that may be required to travel on the underlying streets. Syntax: |
(Optional) | Specify one or more lines that prohibit travel anywhere the lines intersect the streets. Syntax: |
(Optional) | Specify polygons that either prohibit travel or proportionately scale the time or distance required to travel on the streets intersected by the polygons. Syntax: |
(Optional) | Specify whether origins will be returned by the service. The default value is Values: |
(Optional) | Specify whether destination will be returned by the service. The default value is Values: |
(Optional) | Specify whether barriers will be returned by the service. The default value is Values: |
(Optional) | Specify whether polyline barriers will be returned by the service. The default value is Values: |
(Optional) | Specify whether polygon barriers will be returned by the service. The default value is Values: |
(Optional) | Specify the number of decimal places in the response geometries returned by solve operation. This applies to x- and y-values only (not z-values).
|
(Optional) | Specify whether invalid input locations should be ignored when finding the best solution. The default value is Values: |
(Optional) | Specify the spatial reference of the geometries. |
(Optional) | |
(Optional) | Specify whether the service will return empty results instead of the error property when the request fails. Values: The default value is |
(Optional) | Specify settings that affect how inputs are located. Value: JSON object |
Required parameters
The following parameters are required.
origins
Specifies the starting points from which to travel to the destinations.
You can use a simple comma- and semicolon-based syntax if you are passing the input locations using their longitude and latitude values in the WGS84 coordinate system and don't need to pass additional fields for each location.
Simple syntax for origins
origins=x1,y1; x2, y2; ...; xn, yn
Example using simple syntax
origins=-117.1957,34.0564; -117.184,34.0546
The origins
parameter can be specified using a JSON structure that references a set of point features. The property is optional; however, the JSON structure must specify either the url
or features
property:
-
url
—Specify a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set.The JSON structure can include the following property:
do
(optional)—Specify whether the restricted network elements will be considered when finding network locations. The default isNot Locate On Restricted Elements true
.
-
features
—Specify an array of features.Each feature in the
features
array represents an origin and contains the following properties:-
geometry
—Specify the input point geometry containingx
andy
properties along with thespatial
property. If theReference spatial
property is defined for the entire JSON, you don't need to define this property for each geometry. Doing so reduces the size of the input JSON if the input has many features and improves performance. This property is not required if the coordinates are in the default spatial reference, WGS84. If the coordinates are in a different spatial reference, you must specify the spatial reference's well-known ID (WKID). See Using spatial references to look up WKID values.Reference -
attributes
—Specify each attribute as a key-value pair in which the key is the name of a given field, and the value is the attribute value for the corresponding field.
The JSON structure can include the following property:
do
(optional)—Specify whether the restricted network elements will be considered when finding network locations. The default isNot Locate On Restricted Elements true
.
-
Attributes for origins
When specifying the origins, you can set properties for each—such as its name or the number of destinations to find from the origin— using the following attributes:
-
Name
The name of the origin. The name can be a unique identifier for the origin. If
output
isType esri
orNAOD Output Straight Lines esri
, the name is included in the output linesNAOD Output No Lines Name
field (the output lines name will be origin name – destination name). The name is also included in the output origins as theName
field.If the name is not specified, a unique name prefixed with Location is automatically generated.
-
Object
ID The object ID of the origin.
Object
is a unique identifier for the origin. If theID output
value isType esri
orNAOD Output Straight Lines esri
, theNAOD Output No Lines Object
value is included in the output lines (as theID Origin
field). IfID output
isType esri
, theNAOD Output Sparse Matrix Object
value is included in the output matrix. TheID Object
value is also included in the output origins (as theID Object
field) and can be used to join additional information from tool outputs to the attribute of the origins. If theID Object
value is not specified, a unique ID is automatically generated in the output.ID -
Target
Destination Count The maximum number of destinations to find for the origin.
If a value is not specified, the value from the
default
parameter is used.Target Destination Count This field allows you to specify a different number of destinations to find for each origin. For example, using this field, you can find the three closest destinations from one origin and the two closest destinations from another origin.
-
Cutoff
_[ Impedance] If you want to stop searching for destinations once the search has exceeded a certain impedance value, specify a
Cutoff
field for your origin._[ Impedance] This is the impedance attribute name in the analysis, or the impedance name of the travel mode if you specify a travel mode. This attribute allows you to specify a different cutoff value for each destination.
For example, using this attribute, you can specify to search for destinations within five minutes of travel time from one origin and to search for destinations within eight minutes of travel time from another origin.
The units of the cutoff are the same as the units of the impedance attribute. If a value is not specified, the
default
parameter value is used.Cutoff If you have multiple network cost attributes, you'll see multiple
Cutoff
fields. Consequently, you may have more than one time- or distance-based_[ Impedance] Cutoff
field. The field values you provide are only referenced if the cost attribute referred to in the field name is used in the analysis as impedance attribute; it is not used if the attribute is used in the analysis as accumulate attribute._[ Impedance] See the list of cutoff impedance attributes supported by the service.
-
Curb
Approach Specifies the direction a vehicle may depart from the origin.
One of the integers listed in the Coded value column in the following table must be specified as a value of this attribute. The values in the Setting column are the descriptive names for
Curb
attribute values that you may have seen when using the ArcGIS Network Analyst extension software.Approach Setting Coded value Description Either side of vehicle
0
The vehicle can depart the origin in either direction, so a U-turn is allowed at the origin. This setting can be chosen if it is possible and practical for a vehicle to turn around at the origin. This decision may depend on the width of the road and the amount of traffic or whether the origin has a parking lot where vehicles can enter and turn around.
All arrival and departure combinations are allowed with the Either side of vehicle curb approach.
Right side of vehicle
1
When the vehicle departs the origin, the origin must be on the right side of the vehicle. A U-turn is prohibited. This is typically used for vehicles such as buses that must depart from the bus stop on the right side.
The allowed arrival and departure combination for the Right side of vehicle curb approach is shown.
Left side of vehicle
2
When the vehicle departs the origin, the origin must be on the left side of the vehicle. A U-turn is prohibited. This is typically used for vehicles such as buses that must depart from the bus stop on the left side.
The allowed arrival and departure combination for the Left side of vehicle curb approach is shown.
No U-Turn
3
When the vehicle departs the origin, the origin can be on either side of the vehicle; however, when it departs, the vehicle must continue in the same direction it arrived. A U-turn is prohibited.
The allowed arrival and departure combinations for the No U-Turn curb approach are shown.
The
Curb
attribute is designed to work with both types of national driving standards: right-hand traffic (United States) and left-hand traffic (United Kingdom). First, consider an incident on the left side of a vehicle. It is always on the left side regardless of whether the vehicle travels on the left or right half of the road. What may change with national driving standards is your decision to approach an incident from one of two directions, that is, so it ends up on the right or left side of the vehicle. For example, if you want to arrive at an incident and not have a lane of traffic between the vehicle and the incident, choose 1 (Right side of vehicle) in the United States and 2 (Left side of vehicle) in the United Kingdom.Approach -
Bearing
The direction in which a point is moving. The units are degrees and are measured clockwise from true north. This field is used in conjunction with the
Bearing
field.Tol Bearing data is usually sent automatically from a mobile device equipped with a GPS receiver. Try to include bearing data if you are loading an input location that is moving, such as a pedestrian or a vehicle.
Using this field tends to prevent adding locations to the wrong edges, which can occur when a vehicle is near an intersection or an overpass, for example. Bearing also helps the tool determine on which side of the street the point is.
-
Bearing
Tol The bearing tolerance value creates a range of acceptable bearing values when locating moving points on an edge using the
Bearing
field. If theBearing
field value is within the range of acceptable values that are generated from the bearing tolerance on an edge, the point can be added as a network location there; otherwise, the closest point on the next-nearest edge is evaluated.The units are in degrees, and the default value is 30. Values must be greater than 0 and less than 180. A value of 30 means that when Network Analyst attempts to add a network location on an edge, a range of acceptable bearing values is generated 15 degrees to either side of the edge (left and right) and in both digitized directions of the edge.
-
Nav
Latency This field is only used in the solve process if the
Bearing
andBearing
fields also have values; however, entering aTol Nav
field value is optional, even when values are present inLatency Bearing
andBearing
.Tol Nav
indicates how much cost is expected to elapse from the moment GPS information is sent from a moving vehicle to a server and the moment the processed route is received by the vehicle's navigation device.Latency The units of
Nav
are the same as the units of the impedance attribute.Latency
Syntax for origins
The following is the syntax for specifying origins
using JSON structure for features:
{
"spatialReference": {
"wkid": <wkid>,
"latestWkid": <wkid>
},
"features": [
{
"geometry": {
"x": <x>,
"y": <y>
},
"attributes": {
"<field1>": <value11>,
"<field2>": <value12>
}
},
{
"geometry": {
"x": <x>,
"y": <y>
},
"attributes": {
"<field1>": <value21>,
"<field2>": <value22>
}
}
],
"doNotLocateOnRestrictedElements": true | false
}
The following is the syntax for specifying origins
using a URL returning a JSON response:
{
"url": "<url>"
"doNotLocateOnRestrictedElements": true | false
}
Examples for origins
Example one: Specifying origins
geometries in the Web Mercator spatial reference using JSON structure.
The example also shows how to specify the origins
Name
attribute for each origin and specify a different number of destinations to find for each origin using the Target
attribute.
{
"spatialReference": {
"wkid": 102100
},
"features": [
{
"geometry": {
"x": -13635398.9398,
"y": 4544699.034400001
},
"attributes": {
"Name": "123 Main St",
"TargetDestinationCount": 1
}
},
{
"geometry": {
"x": -13632733.3441,
"y": 4547651.028300002
},
"attributes": {
"Name": "845 Mulberry St",
"TargetDestinationCount": 2
}
}
]
}
Example two: Specifying origins
using a URL
The URL makes a query for a few features from a map service. A URL querying features from a feature service can also be specified.
{
"url": "https://sampleserver3.arcgisonline.com/ArcGIS/rest/services/Network/USA/MapServer/1/query?where=1%3D1&outFields=Name,RouteName&f=json"
}
destinations
Specifies the ending point locations to travel to from the origins.
You can use a simple comma- and semicolon-based syntax if you are passing the input locations using their longitude and latitude values in the WGS84 coordinate system and don't need to pass additional fields for each location.
Simple syntax for destinations
destinations=x1,y1; x2, y2; ...; xn, yn
Example using simple syntax
destinations=-117.1957,34.0564; -117.184,34.0546
The destinations
parameter can be specified using a JSON structure that references a set of point features. The property is optional; however, the JSON structure must specify either the url
or features
property:
-
url
—Specify a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set.The JSON structure can include the following property:
do
(optional)—Specify whether the restricted network elements will be considered when finding network locations. The default isNot Locate On Restricted Elements true
.
-
features
—Specify an array of features.Each feature in the
features
array represents a destination and contains the following properties:-
geometry
—Specify the input point geometry containingx
andy
properties along with thespatial
property. If theReference spatial
property is defined for the entire JSON, you don't need to define this property for each geometry. Doing so reduces the size of the input JSON if the input has many features and improves performance. This property is not required if the coordinates are in the default spatial reference, WGS84. If the coordinates are in a different spatial reference, you must specify the spatial reference's well-known ID (WKID). See Using spatial references to look up WKID values.Reference -
attributes
—Specify each attribute as a key-value pair in which the key is the name of a given field, and the value is the attribute value for the corresponding field.
The JSON structure can include the following property:
do
(optional)—Specify whether the restricted network elements will be considered when finding network locations. The default isNot Locate On Restricted Elements true
.
-
Attributes for destinations
When specifying the destinations, you can set properties for each—such as its name—using the following attributes:
-
Name
The name of the destination. The name can be a unique identifier for the destination. If
output
isType esri
orNAOD Output Straight Lines esri
, the name is included in the output linesNAOD Output No Lines Name
field (the output lines name will be origin name – destination name). The name is also included in the output destinations as theName
field.If the name is not specified, a unique name prefixed with Location is automatically generated.
-
Object
ID The object ID of the destination.
Object
is a unique identifier for the destination. If theID output
value isType esri
orNAOD Output Straight Lines esri
, theNAOD Output No Lines Object
value is included in the output lines (as theID Destination
field). IfID output
isType esri
, theNAOD Output Sparse Matrix Object
value is included in the output matrix. TheID Object
value is also included in the output destinations (as theID Object
field) and can be used to join additional information from tool outputs to the attribute of the destinations. If theID Object
value is not specified, a unique ID is automatically generated in the output.ID -
Curb
Approach Specifies the direction a vehicle may arrive at the destination.
One of the integers listed in the Coded value column in the following table must be specified as a value of this attribute. The values in the Setting column are the descriptive names for
Curb
attribute values that you may have seen when using the ArcGIS Network Analyst extension software.Approach Setting Coded value Description Either side of vehicle
0
The vehicle can arrive at the destination from either direction. This setting can be chosen if it is possible and practical for the vehicle to turn around at the destination. This decision may depend on the width of the road and the amount of traffic or whether the destination has a parking lot where vehicles can enter and turn around.
All arrival and departure combinations are allowed with the Either side of vehicle curb approach.
Right side of vehicle
1
When the vehicle arrives at the destination, the destination must be on the right side of the vehicle. A U-turn is prohibited. This is typically used for vehicles such as buses that must arrive at the bus stop on the right side.
The allowed arrival and departure combination for the Right side of vehicle curb approach is shown.
Left side of vehicle
2
When the vehicle arrives at the destination, the destination must be on the left side of the vehicle. A U-turn is prohibited. This is typically used for vehicles such as buses that must arrive at the bus stop on the left side.
The allowed arrival and departure combination for the Left side of vehicle curb approach is shown.
No U-Turn
3
When the vehicle arrives at the destination, the destination can be on either side of the vehicle; however, when it departs, the vehicle must continue in the same direction it arrived. A U-turn is prohibited.
The allowed arrival and departure combinations for the No U-Turn curb approach are shown.
The
Curb
attribute is designed to work with both types of national driving standards: right-hand traffic (United States) and left-hand traffic (United Kingdom). First, consider an incident on the left side of a vehicle. It is always on the left side regardless of whether the vehicle travels on the left or right half of the road. What may change with national driving standards is your decision to approach an incident from one of two directions, that is, so it ends up on the right or left side of the vehicle. For example, if you want to arrive at an incident and not have a lane of traffic between the vehicle and the incident, choose 1 (Right side of vehicle) in the United States and 2 (Left side of vehicle) in the United Kingdom.Approach -
Bearing
The direction in which a point is moving. The units are degrees and are measured clockwise from true north. This field is used in conjunction with the
Bearing
field.Tol Bearing data is usually sent automatically from a mobile device equipped with a GPS receiver. Try to include bearing data if you are loading an input location that is moving, such as a pedestrian or a vehicle.
Using this field tends to prevent adding locations to the wrong edges, which can occur when a vehicle is near an intersection or an overpass, for example. Bearing also helps the tool determine on which side of the street the point is.
-
Bearing
Tol The bearing tolerance value creates a range of acceptable bearing values when locating moving points on an edge using the
Bearing
field. If theBearing
field value is within the range of acceptable values that are generated from the bearing tolerance on an edge, the point can be added as a network location there; otherwise, the closest point on the next-nearest edge is evaluated.The units are in degrees, and the default value is 30. Values must be greater than 0 and less than 180. A value of 30 means that when Network Analyst attempts to add a network location on an edge, a range of acceptable bearing values is generated 15 degrees to either side of the edge (left and right) and in both digitized directions of the edge.
-
Nav
Latency This field is only used in the solve process if the
Bearing
andBearing
fields also have values; however, entering aTol Nav
field value is optional, even when values are present inLatency Bearing
andBearing
.Tol Nav
indicates how much cost is expected to elapse from the moment GPS information is sent from a moving vehicle to a server and the moment the processed route is received by the vehicle's navigation device.Latency The units of
Nav
are the same as the units of the impedance attribute.Latency
Syntax examples for destinations
The following is the syntax for specifying destinations
using JSON structure for features:
{
"spatialReference": {
"wkid": <wkid>,
"latestWkid": <wkid>
},
"features": [
{
"geometry": {
"x": <x>,
"y": <y>
},
"attributes": {
"<field1>": <value11>,
"<field2>": <value12>
}
},
{
"geometry": {
"x": <x>,
"y": <y>
},
"attributes": {
"<field1>": <value21>,
"<field2>": <value22>
}
}
],
"doNotLocateOnRestrictedElements": true | false
}
The following is the syntax for specifying destinations
using a URL returning a JSON response:
{
"url": "<url>"
"doNotLocateOnRestrictedElements": true | false
}
Examples for destinations
Example one: Specifying destinations
geometry in the Web Mercator spatial reference using JSON structure.
The example also shows how to specify the Name
attribute.
{
"spatialReference": {
"wkid": 102100
},
"features": [
{
"geometry": {
"x": -13635398.9398,
"y": 4544699.034400001
},
"attributes": {
"Name": "Store 45"
}
},
{
"geometry": {
"x": -13632733.3441,
"y": 4547651.028300002
},
"attributes": {
"Name": "Store 67"
}
}
]
}
Example two: Specifying destinations
using a URL
The URL makes a query for a few features from a map service. A URL querying features from a feature service can also be specified.
{
"url": "https://sampleserver3.arcgisonline.com/ArcGIS/rest/services/Network/USA/MapServer/1/query?where=1%3D1&outFields=Name,RouteName&f=json"
}
token
Use this parameter to specify a token that provides the identity of a user that has the permissions to access the service. The security and authentication page provides more information about how an access token can be obtained.
token=<yourToken>
f
Use this parameter to specify the response format. The parameter can have json
or pjson
as arguments, for example, f=json
. The pjson
value is used for printing the JSON response in a prettified format.
Optional parameters
The following parameters are optional.
travelMode
Choose the mode of transportation for the analysis.
Travel modes are managed in ArcGIS Online and can be configured by the administrator of your organization to better reflect the organization's workflows.
The value for the travel
parameter is the JSON object containing the settings for a travel mode supported by your organization. To get the supported travel modes, run the retrieve
service.
You can make a request to retrieve travel modes using the following form:
https://route.arcgis.com/arcgis/rest/services/World/OriginDestinationCostMatrix/NAServer/OriginDestinationCostMatrix_World/retrieveTravelModes?f=json&token=
The response below is returned by the retrieve
service.
{
"currentVersion": 10.8,
"defaultTravelMode": "FEgifRtFndKNcJMJ",
"supportedTravelModes": [
{
"attributeParameterValues": [
{
"parameterName": "Restriction Usage",
"attributeName": "Avoid Private Roads",
"value": "AVOID_MEDIUM"
},
{
"parameterName": "Restriction Usage",
"attributeName": "Walking",
"value": "PROHIBITED"
},
{
"parameterName": "Restriction Usage",
"attributeName": "Preferred for Pedestrians",
"value": "PREFER_LOW"
},
{
"parameterName": "Walking Speed (km/h)",
"attributeName": "WalkTime",
"value": 5
},
{
"parameterName": "Restriction Usage",
"attributeName": "Avoid Roads Unsuitable for Pedestrians",
"value": "AVOID_HIGH"
}
],
"description": "Follows paths and roads that allow pedestrian traffic and finds
solutions that optimize travel time. The walking speed is set to
5 kilometers per hour.",
"impedanceAttributeName": "WalkTime",
"simplificationToleranceUnits": "esriMeters",
"uturnAtJunctions": "esriNFSBAllowBacktrack",
"restrictionAttributeNames": [
"Avoid Private Roads",
"Avoid Roads Unsuitable for Pedestrians",
"Preferred for Pedestrians",
"Walking"
],
"useHierarchy": false,
"simplificationTolerance": 2,
"timeAttributeName": "WalkTime",
"distanceAttributeName": "Kilometers",
"type": "WALK",
"id": "caFAgoThrvUpkFBW",
"name": "Walking Time"
},
{
"attributeParameterValues": [
{
"parameterName": "Restriction Usage",
"attributeName": "Avoid Unpaved Roads",
"value": "AVOID_HIGH"
},
{
"parameterName": "Restriction Usage",
"attributeName": "Avoid Private Roads",
"value": "AVOID_MEDIUM"
},
{
"parameterName": "Restriction Usage",
"attributeName": "Driving an Automobile",
"value": "PROHIBITED"
},
{
"parameterName": "Restriction Usage",
"attributeName": "Through Traffic Prohibited",
"value": "AVOID_HIGH"
},
{
"parameterName": "Vehicle Maximum Speed (km/h)",
"attributeName": "TravelTime",
"value": 0
},
{
"parameterName": "Restriction Usage",
"attributeName": "Roads Under Construction Prohibited",
"value": "PROHIBITED"
},
{
"parameterName": "Restriction Usage",
"attributeName": "Avoid Gates",
"value": "AVOID_MEDIUM"
},
{
"parameterName": "Restriction Usage",
"attributeName": "Avoid Express Lanes",
"value": "PROHIBITED"
},
{
"parameterName": "Restriction Usage",
"attributeName": "Avoid Carpool Roads",
"value": "PROHIBITED"
}
],
"description": "Models the movement of cars and other similar small automobiles,
such as pickup trucks, and finds solutions that optimize travel
time. Travel obeys one-way roads, avoids illegal turns, and
follows other rules that are specific to cars. When you specify
a start time, dynamic travel speeds based on traffic are used
where it is available.",
"impedanceAttributeName": "TravelTime",
"simplificationToleranceUnits": "esriMeters",
"uturnAtJunctions": "esriNFSBAtDeadEndsAndIntersections",
"restrictionAttributeNames": [
"Avoid Unpaved Roads",
"Avoid Private Roads",
"Driving an Automobile",
"Through Traffic Prohibited",
"Roads Under Construction Prohibited",
"Avoid Gates",
"Avoid Express Lanes",
"Avoid Carpool Roads"
],
"useHierarchy": true,
"simplificationTolerance": 10,
"timeAttributeName": "TravelTime",
"distanceAttributeName": "Kilometers",
"type": "AUTOMOBILE",
"id": "FEgifRtFndKNcJMJ",
"name": "Driving Time"
}
]
}
From the JSON above, to pass Walking Time
as the travel mode, use the following JSON as the value for the travel
parameter:
travelMode={"attributeParameterValues": [{"parameterName": "Restriction Usage","attributeName": "Walking","value": "PROHIBITED"},{"parameterName": "Restriction Usage","attributeName": "Preferred for Pedestrians","value": "PREFER_LOW"},{"parameterName": "Walking Speed (km/h)","attributeName": "WalkTime","value": 5}],"description": "Follows paths and roads that allow pedestrian traffic and finds solutions that optimize travel time. The walking speed is set to 5 kilometers per hour.","impedanceAttributeName": "WalkTime","simplificationToleranceUnits": "esriMeters","uturnAtJunctions": "esriNFSBAllowBacktrack","restrictionAttributeNames": ["Preferred for Pedestrians","Walking"],"useHierarchy": false,"simplificationTolerance": 2,"timeAttributeName": "WalkTime","distanceAttributeName": "Miles","type": "WALK","id": "caFAgoThrvUpkFBW","name": "Walking Time"}
defaultCutoff
Use this parameter to specify the travel time or travel distance value at which to stop searching for destinations from a given origin.
The unit for this parameter is based on the unit of the impedance attribute specified using the impedance
parameter or the impedance
value of the travel mode if a travel mode is specified . If the impedance
parameter is Travel
, the default
value is specified in minutes. Otherwise, the value is specified in miles or kilometers based on whether the impedance
parameter is set to Miles
or Kilometers
, respectively.
The value for the default
parameter can be overridden on a per-origin basis by specifying a value for the Cutoff
attribute when specifying the origins
parameter value.
defaultTargetDestinationCount
The maximum number of destinations to find per origin. If a value for this parameter is not specified, the output matrix includes travel costs from each origin to every destination.
The value for the default
parameter can be overridden by specifying a value for the Target
attribute when specifying the origins
parameter.
outputType
Specify the type of route features that are output by the service. The output
parameter can have one of the following values:
esri
—Return the cost between origin and destination using a sparse matrix format.NAOD Output Sparse Matrix esri
—Return a straight line between the origin and the destination.NAOD Output Straight Lines esri
—Do not return any shapes for the result.NAOD Output No Lines
timeOfDay
The time and date to depart from the origins. You can also specify a value of now
to set the depart time from origins to the current time.
Specifying a time of day results in more accurate estimations of travel times because the travel times account for the traffic conditions that are applicable for that date and time.
To use traffic in the analysis, set impedance
to Travel
, and assign a time
value.
The time
value represents the time at which the travel begins from the input origins. The time is specified as UNIX time (milliseconds since midnight, January 1, 1970).
If a value of now
is passed to the time
parameter, the travel begins at the current time. This will also override the time
parameter value to be true
. When time
is now
and time
is true
, the travel will begin or end at input locations at the current time regardless of the time zone of the input locations.
If a time of day is not passed in, the service uses static road speeds based on average historical speeds or posted speed limits. It uses posted speeds in areas where historical traffic information isn't available.
The service support two kinds of traffic: live and typical.
If the time
value specified is within four hours of the current time, live traffic will be used where available. Live traffic retrieves speeds based on phone probe records, sensors, and other data sources and reflects the current travel speeds and predicts speeds for the near future. If the time
value specified is more than four hours earlier or later than the current time, or the road does not have live traffic, typical traffic speeds will be used. Typical speeds are based on historical traffic patterns. The travel time data is aggregated in 15-minute intervals per day of week based on multiple years worth of data. Consequently, a road may have a different travel time at Monday at 8:00 a.m., Monday at 8:15 a.m., or Tuesday at 8:00 a.m.. Since the variance is at the day of week and time of day, the travel time is the same on a road for any Monday at 8:00 a.m., regardless of the month or year.
If your goal is to model typical travel conditions and avoid large variances from the average due to live traffic, it is recommended that you use a date from the past to ensure that it doesn't coincide with the 4-hour window from the current time. As an extreme example, you can even use dates from 1990.
ArcGIS Online Directions and Routing Services Coverage shows the countries Esri currently provides traffic data for.
Typical traffic
To ensure the task uses typical traffic in locations where it is available, choose a time and day of the week; then convert the day of the week to one of the following dates from 1990:
- Monday—1/1/1990
- Tuesday—1/2/1990
- Wednesday—1/3/1990
- Thursday—1/4/1990
- Friday—1/5/1990
- Saturday—1/6/1990
- Sunday—1/7/1990
Set the time and date as UNIX time in milliseconds. For example, to solve for 1:03 p.m. on Thursdays, set the time and date to 1:03 p.m., January 4, 1990, and convert to milliseconds (631458180000
). Although the dates representing days of the week are from 1990, typical traffic is calculated from recent traffic trends—usually over the last two years worth of data.
Live traffic
To use live traffic when and where it is available, choose a time and date and convert to UNIX time.
Esri saves live traffic data for 4 hours and references predictive data extending 4 hours into the future. If the time and date you specify for this parameter is outside the 8-hour time window, or the travel time in the analysis continues past the predictive data window, the task returns to typical traffic speeds.
Examples for timeOfDay
Example 1: 13:03, January 4, 1990. Typical traffic on Thursdays at 1:03 p.m.
"timeOfDay": 631458180000
Example 2: 17:00, January 7, 1990. Typical traffic on Sundays at 5:00 p.m.
"timeOfDay": 631731600000
Example 3: Specify the now
value. The analysis begins at the current time and live traffic speeds are referenced in the analysis.
"timeOfDay": now
Example 4: 10:20, March 18, 2015. If the current time is between 6:20 a.m., March 18, 2015, and 2:20 p.m., March 18, 2015, live traffic speeds are referenced in the analysis; otherwise, typical traffic speeds are referenced.
"timeOfDay": 1426674000000
timeOfDayIsUTC
Specify the time zone or zones of the time
parameter.
The default value is false
False (use geographically local time zones)
The time
value refers to the time zone or zones in which the input points are located. This option causes the analysis to have rolling start times across time zones.
The following image illustrates setting the value to false
(geographically local). Setting time
to 9:00 a.m., January 4, 1990 (631443600000 milliseconds) and time
to false
, and submitting a valid request causes the drive times for points in the eastern time zone to start at 9:00 a.m. and 9:00 a.m. central time for points in the central time zone. (The start times are offset by an hour in real or UTC time.)
_Input: time
is 9:00 a.m., January 4, 1990 (631443600000 milliseconds), and time
is set to false
_
True (use UTC)
The time
value refers to coordinated universal time (UTC). The start times for all points are simultaneous, regardless of time zones.
The following image illustrates setting the value to true
(UTC). Setting time
to 9:00 a.m., January 4, 1990 (631443600000 milliseconds) and time
to true
causes the start time for points in the eastern time zone to be 4:00 a.m. eastern time and 3:00 a.m. central time for those in the central time zone.
_Input: time
is 9:00 a.m., January 4, 1990 (631443600000 milliseconds), and time
is set to true
_
useHierarchy
Specify whether hierarchy will be used when finding the destinations.
true
—Use hierarchy when travelling from origins to destinations. When hierarchy is used, the service prefers higher-order streets (such as freeways) to lower-order streets (such as local roads), and can be used to simulate the driver preference of traveling on freeways instead of local roads even if that means a longer trip. This is especially true when finding routes to faraway locations, because drivers on long-distance trips tend to prefer traveling on freeways where stops, intersections, and turns can be avoided. Using hierarchy is computationally faster, especially for long-distance routes, since the service can determine the best route from a relatively smaller subset of streets.false
—Do not use hierarchy when travelling from origins to destinations. If hierarchy is not used, the service considers all the streets and doesn't prefer higher-order streets. This is often used when solving problems in a small area with a lot of destination but are specifying a cutoff based on a subset of them.
restrictUTurns
Use this parameter to restrict or permit the route from making U-turns at junctions.
To understand the available parameter values, a junction is a point where only two streets intersect each other. If three or more streets intersect at a point, it is called as an intersection. A cul-de-sac is a dead-end. This parameter can have the following values:
Parameter value | Description |
---|---|
| U-turns are permitted everywhere. Permitting U-turns implies that the vehicle can turn around at a junction and double back on the same street. U-turns are permitted at junctions with any number of adjacent streets. |
| U-turns are prohibited at junctions where exactly two adjacent streets meet. U-turns are permitted only at intersections or dead ends. |
| U-turns are prohibited at all junctions and intersections and are permitted only at dead ends. U-turns are permitted only at dead ends. |
| U-turns are prohibited at all junctions, intersections, and dead-ends. Even when this parameter value is chosen, a route can still make U-turns at stops. To prohibit U-turns at a stop, you can set its |
The default value is esri
impedanceAttributeName
Specify the impedance.
Impedance is a value that quantifies travel along the transportation network. Travel distance is an example of impedance; it quantifies the length of walkways and road segments. Similarly, drive time—the typical time it takes to drive a car along a road segment—is an example of impedance. Drive times may vary by type of vehicle—for instance, the time it takes for a truck to travel along a path tends to be longer than a car—so there can be many impedance values representing travel times for different vehicle types. Impedance values may also vary with time; live and typical traffic reference dynamic impedance values. Each walkway and road segment stores at least one impedance value. When performing a network analysis, the impedance values are used to calculate the best results, such as finding the shortest route—the route that minimizes impedance—between two points.
The impedance
parameter can be specified using the following values:
- TravelTime—Historical and live traffic data is used. This option is good for modeling the time it takes automobiles to travel along roads at a specific time of day using live traffic speed data where available. When using TravelTime, you can optionally set the TravelTime::Vehicle Maximum Speed (km/h) attribute parameter to specify the physical limitation of the speed the vehicle is capable of traveling.
- Minutes—Live traffic data is not used, but historical average speeds for automobiles data is used.
- TruckTravelTime—Historical and live traffic data is used, but the speed is capped at the posted truck speed limit. This is good for modeling the time it takes for the trucks to travel along roads at a specific time. When using TruckTravelTime, you can optionally set the TruckTravelTime::Vehicle Maximum Speed (km/h) attribute parameter to specify the physical limitation of the speed the truck is capable of traveling.
- TruckMinutes—Live traffic data is not used, but the smaller of the historical average speeds for automobiles and the posted speed limits for trucks are used.
- WalkTime—The default is a speed of 5 km/hr on all roads and paths, but this can be configured through the WalkTime::Walking Speed (km/h) attribute parameter.
- Miles—Length measurements along roads are stored in miles and can be used for performing analysis based on shortest distance.
- Kilometers—Length measurements along roads are stored in kilometers and can be used for performing analysis based on shortest distance.
accumulate Attribute Names
Use this parameter to specify whether the service will accumulate values other than the value specified for impedance
. For example, if impedance
is set to Travel
, the total travel time for the route will be calculated by the service. However, if you also want to calculate the total distance of the route in miles, you can specify Miles
as the value for the accumulate
parameter.
Specify the parameter value as a comma-separated list of names. The parameter values are the same as the impedance
parameter. For example, accumulate
indicates that the total cost of the route will also be calculated in miles and kilometers.
restrictionAttributeNames
Use this parameter to specify the restrictions that will be honored by the service. A restriction represents a driving preference or requirement. In most cases, restrictions cause roads or pathways to be prohibited, but they can also cause them to be avoided or preferred. For instance, using the Avoid Toll Roads
restriction will result in a route that will include toll roads only when it is required to travel on toll roads to visit a stop. Use Height Restriction
to route around clearances that are lower than the height of the vehicle. If the vehicle is carrying corrosive materials, you can use the Any Hazmat Prohibited
restriction to prevent hauling the materials along roads where it is marked as illegal to do so.
This parameter value is specified as a comma-separated list of restriction names. A value of none indicates that no restrictions will be used when finding the shortest paths.
The restriction
parameter can be specified using the following values:
- Any Hazmat Prohibited—The results will not include roads where transporting any kind of hazardous material is prohibited.
- Avoid Carpool Roads—The results will avoid roads that are designated exclusively for car pool (high-occupancy) vehicles.
- Avoid Express Lanes—The results will avoid roads designated as express lanes.
- Avoid Ferries—The results will avoid ferries.
- Avoid Gates—The results will avoid roads where there are gates, such as keyed access or guard-controlled entryways.
- Avoid Limited Access Roads—The results will avoid roads that are limited-access highways.
- Avoid Private Roads—The results will avoid roads that are not publicly owned and maintained.
- Avoid Roads Unsuitable for Pedestrians—The results will avoid roads that are unsuitable for pedestrians.
- Avoid Stairways—The results will avoid all stairways on a pedestrian-suitable route.
- Avoid Toll Roads—The results will avoid all toll roads for automobiles.
- Avoid Toll Roads for Trucks—The results will avoid all toll roads for trucks.
- Avoid Truck Restricted Roads—The results will avoid roads where trucks are not allowed, except when making deliveries.
- Avoid Unpaved Roads—The results will avoid roads that are not paved (for example, dirt, gravel, and so on).
- Axle Count Restriction—The results will not include roads where trucks with the specified number of axles are prohibited. The number of axles can be specified using the Number of Axles restriction parameter.
- Driving a Bus—The results will not include roads where buses are prohibited. Using this restriction will also ensure that the results will honor one-way streets.
- Driving a Taxi—The results will not include roads where taxis are prohibited. Using this restriction will also ensure that the results will honor one-way streets.
- Driving a Truck—The results will not include roads where trucks are prohibited. Using this restriction will also ensure that the results will honor one-way streets.
- Driving an Automobile—The results will not include roads where automobiles are prohibited. Using this restriction will also ensure that the results will honor one-way streets.
- Driving an Emergency Vehicle—The results will not include roads where emergency vehicles are prohibited. Using this restriction will also ensure that the results will honor one-way streets.
- Height Restriction—The results will not include roads where the vehicle height exceeds the maximum allowed height for the road. The vehicle height can be specified using the Vehicle Height (meters) restriction parameter.
- Kingpin to Rear Axle Length Restriction—The results will not include roads where the vehicle length exceeds the maximum allowed kingpin to rear axle for all trucks on the road. The length between the vehicle kingpin and the rear axle can be specified using the Vehicle Kingpin to Rear Axle Length (meters) restriction parameter.
- Length Restriction—The results will not include roads where the vehicle length exceeds the maximum allowed length for the road. The vehicle length can be specified using the Vehicle Length (meters) restriction parameter.
- Preferred for Pedestrians—The results will use preferred routes suitable for pedestrian navigation.
- Riding a Motorcycle—The results will not include roads where motorcycles are prohibited. Using this restriction will also ensure that the results will honor one-way streets.
- Roads Under Construction Prohibited—The results will not include roads that are under construction.
- Semi or Tractor with One or More Trailers Prohibited—The results will not include roads where semis or tractors with one or more trailers are prohibited.
- Single Axle Vehicles Prohibited—The results will not include roads where vehicles with single axles are prohibited.
- Tandem Axle Vehicles Prohibited—The results will not include roads where vehicles with tandem axles are prohibited.
- Through Traffic Prohibited—The results will not include roads where through traffic (nonlocal traffic) is prohibited.
- Truck with Trailers Restriction—The results will not include roads where trucks with the specified number of trailers on the truck are prohibited. The number of trailers on the truck can be specified using the Number of Trailers on Truck restriction parameter.
- Use Preferred Hazmat Routes—The results will prefer roads that are designated for transporting hazardous materials.
- Use Preferred Truck Routes—The results will prefer roads that are designated as truck routes, such as roads that are part of the national network as specified by the National Surface Transportation Assistance Act in the United States, or roads that are designated as truck routes by the state or province, or roads that are preferred by truckers when driving in an area.
- Walking—The results will not include roads where pedestrians are prohibited.
- Weight Restriction—The results will not include roads where the vehicle weight exceeds the maximum allowed weight for the road. The vehicle weight can be specified using the Vehicle Weight (kilograms) restriction parameter.
- Weight per Axle Restriction—The results will not include roads where the vehicle weight per axle exceeds the maximum allowed weight per axle for the road. The vehicle weight per axle can be specified using the Vehicle Weight per Axle (kilograms) restriction parameter.
- Width Restriction—The results will not include roads where the vehicle width exceeds the maximum allowed width for the road. The vehicle width can be specified using the Vehicle Width (meters) restriction parameter.
The Driving a Delivery Vehicle
restriction attribute is no longer available. The service will ignore this restriction since it is invalid. To achieve similar results, use the Driving a Truck
restriction attribute along with the Avoid Truck Restricted Roads
restriction attribute.
The restriction
parameter value is specified as a list of restriction names. A value of null
indicates that no restrictions will be used when finding the best route, but only when travel
is set to null
.
attributeParameterValues
Use this parameter to specify additional values required by an attribute or restriction, such as to specify whether the restriction prohibits, avoids, or prefers travel on restricted roads. If the restriction is meant to avoid or prefer roads, you can further specify the degree to which they are avoided or preferred using this parameter. For example, you can choose to never use toll roads, avoid them as much as possible, or prefer them.
This parameter value is specified as an array of objects each having the following properties:
attribute
—The name of the restriction.Name parameter
—The name of the parameter associated with the restriction. A restriction can have one or moreName parameter
properties.Name value
—The value forparameter
.Name
Most attribute parameters are related to the restriction attributes in restriction
. Each restriction has at least one attribute parameter named Restriction Usage
, which specifies whether the restriction prohibits, avoids, or prefers travel on the roads associated with the restriction and the degree to which the roads are avoided or preferred. The Restriction Usage
parameter can be assigned any of the following string values or their equivalent numeric values in the parentheses:
Prohibited
(-1
)—Travel on the roads that have the restriction is prohibited.Avoid
(_High 5
)—It is very unlikely the service will include in the route the roads that are associated with the restriction.Avoid
(_Medium 2
)—It is unlikely the service will include in the route the roads that are associated with the restriction.Avoid
(_Low 1.3
)—It is somewhat unlikely the service will include in the route the roads that are associated with the restriction.Prefer
(_Low 0.8
)—It is somewhat likely the service will include in the route the roads that are associated with the restriction.Prefer
(_Medium 0.5
)—It is likely the service will include in the route the roads that are associated with the restriction.Prefer
(_High 0.2
)—It is very likely the service will include in the route the roads that are associated with the restriction.
The following table lists the attribute parameter names and the default parameter values.
Restriction name | Restriction parameter name | Restriction parameter default value |
---|---|---|
Any Hazmat Prohibited | Restriction Usage | Prohibited |
Avoid Carpool Roads | Restriction Usage | Prohibited |
Avoid Express Lanes | Restriction Usage | Prohibited |
Avoid Ferries | Restriction Usage | Avoid_Medium |
Avoid Gates | Restriction Usage | Avoid_Medium |
Avoid Limited Access Roads | Restriction Usage | Avoid_Medium |
Avoid Private Roads | Restriction Usage | Avoid_Medium |
Avoid Roads Unsuitable for Pedestrians | Restriction Usage | Avoid_High |
Avoid Stairways | Restriction Usage | Avoid_High |
Avoid Toll Roads | Restriction Usage | Avoid_Medium |
Avoid Toll Roads for Trucks | Restriction Usage | Avoid_Medium |
Avoid Truck Restricted Roads | Restriction Usage | Avoid_High |
Avoid Unpaved Roads | Restriction Usage | Avoid_High |
Axle Count Restriction | Number of Axles | 0 |
Restriction Usage | Prohibited | |
Driving a Bus | Restriction Usage | Prohibited |
Driving a Taxi | Restriction Usage | Prohibited |
Driving a Truck | Restriction Usage | Prohibited |
Driving an Automobile | Restriction Usage | Prohibited |
Driving an Emergency Vehicle | Restriction Usage | Prohibited |
Height Restriction | Restriction Usage | Prohibited |
Vehicle Height (meters) | 0 | |
Kingpin to Rear Axle Length Restriction | Restriction Usage | Prohibited |
Vehicle Kingpin to Rear Axle Length (meters) | 0 | |
Length Restriction | Restriction Usage | Prohibited |
Vehicle Length (meters) | 0 | |
Preferred for Pedestrians | Restriction Usage | Prefer_Low |
Riding a Motorcycle | Restriction Usage | Prohibited |
Roads Under Construction Prohibited | Restriction Usage | Prohibited |
Semi or Tractor with One or More Trailers Prohibited | Restriction Usage | Prohibited |
Single Axle Vehicles Prohibited | Restriction Usage | Prohibited |
Tandem Axle Vehicles Prohibited | Restriction Usage | Prohibited |
Through Traffic Prohibited | Restriction Usage | Avoid_High |
Truck with Trailers Restriction | Restriction Usage | Prohibited |
Number of Trailers on Truck | 0 | |
Use Preferred Hazmat Routes | Restriction Usage | Prefer_Medium |
Use Preferred Truck Routes | Restriction Usage | Prefer_High |
Walking | Restriction Usage | Prohibited |
WalkTime | Walking Speed (km/h) | 5 |
Weight Restriction | Restriction Usage | Prohibited |
Vehicle Weight (kilograms) | 0 | |
Weight per Axle Restriction | Restriction Usage | Prohibited |
Vehicle Weight per Axle (kilograms) | 0 | |
Width Restriction | Restriction Usage | Prohibited |
Vehicle Width (meters) | 0 |
Syntax example for attributeParameterValues
[
{
"attributeName": "<attribute1>",
"parameterName": "<parameter1>",
"value": "<value1>"
},
{
"attributeName": "<attribute2>",
"parameterName": "<parameter2>",
"value": "<value2>"
}
]
Example for attributeParameterValues
This example shows how to specify the height and weight of the vehicle for use with the height and weight restrictions, respectively, along with a high preference to include the designated truck routes. This results in a route that does not include roads where the clearance under overpasses or through tunnels is less than the vehicle height. The route will also not include roads with load-limited bridges or local roads that prohibit heavy vehicles if the vehicle weight exceeds the maximum permissible weight. However, the route will include as many roads as possible that are designated as preferred truck routes.
The Restriction Usage
parameter for Height Restriction
and Weight Restriction
are not specified, as the default value of Prohibit
will be used for these restriction parameters.
attributeParameterValues=
[
{
"attributeName": "Height Restriction",
"parameterName": "Vehicle Height (meters)",
"value": 4.12
},
{
"attributeName": "Weight Restriction",
"parameterName": "Vehicle Weight (kilograms)",
"value": 36287
},
{
"attributeName": "Use Preferred Truck Routes",
"parameterName": "Restriction Usage",
"value": "Prefer_High"
}
]
barriers
Use this parameter to specify one or more points that will act as temporary restrictions or represent additional time or distance that may be required to travel on the underlying streets. For example, a point barrier can be used to represent a fallen tree along a street or a time delay spent at a railroad crossing.
You can use a simple comma- and semicolon-based syntax if you are passing the point barrier locations using their longitude and latitude values in the WGS84 coordinate system and don't need to pass additional fields for each location.
Simple syntax for barriers
barriers=x1,y1; x2, y2; ...; xn, yn
Example using simple syntax
barriers=-117.1957,34.0564; -117.184,34.0546
You can specify barrier geometries as well as attributes using a more comprehensive JSON structure that references a set of features. The property is optional; however, the JSON structure must specify either the url
or features
property:
-
url
—Specify a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set.The JSON structure can include the following property:
do
(optional)—Specify whether the restricted network elements will be considered when finding network locations. The default isNot Locate On Restricted Elements true
.
-
features
—Specify an array of features.Each feature in this array represents a point barrier and contains the following fields:
-
geometry
—Specify the input point geometry containingx
andy
properties along with thespatial
property. If theReference spatial
property is defined for the entire JSON, you don't need to define this property for each geometry. Doing so reduces the size of the input JSON if the input has many features and improves performance. This property is not required if the coordinates are in the default spatial reference, WGS84. If the coordinates are in a different spatial reference, you must specify the spatial reference's well-known ID (WKID). See Using spatial references to look up WKID values.Reference -
attributes
—Specify each attribute as a key-value pair in which the key is the name of a given field, and the value is the attribute value for the corresponding field.
The JSON structure can include the following property:
do
(optional)—Specify whether the restricted network elements will be considered when finding network locations. The default isNot Locate On Restricted Elements true
.
-
Attribute for barriers
When specifying the barriers
parameter using JSON structure, you can specify additional information about barriers—such as the barrier type—using attributes. The barriers
parameter can be specified with the following attributes:
Name
The name of the barrier.
Object
The object ID of the barrier. Object
is a unique identifier for the barrier. If you want to maintain a relationship between the input and output, set preserve
to true
. The Object
value of the input barrier is included in the output barrier (as the Object
field) and can be used to join additional information from analysis outputs to the attribute of the barriers. If the Object
value is not specified, a unique ID is automatically generated in the output.
Barrier
Specifies whether the point barrier restricts travel completely or adds time or distance when it is crossed. The value for this attribute is specified as one of the following integers (use the numeric code, not the name in parentheses):
-
0 (Restriction)—Prohibits travel through the barrier. The barrier is referred to as a restriction point barrier since it acts as a restriction.
The first map shows the shortest path between two stops without any restriction point barriers. The second map has a road that is blocked by a fallen tree, so the shortest path between the same points is longer.
-
2 (Added Cost)—Traveling through the barrier increases the travel time or distance by the amount specified in the
Attr
,_Travel Time Attr
,_Miles Attr
,_Kilometers Attr
,_Minutes Attr
,_Walk Time Attr
, and_Truck Minutes Attr
attributes. This barrier type is referred to as an added cost point barrier._Truck Travel Time The first map shows the shortest path between two stops without any added cost point barrier. For the second map, the travel time from stop 1 to stop 2 is the same whether going around the north end of the block or the south end; however, since crossing railroad tracks incurs a time penalty (modeled with added cost point barriers), the route with only one railroad crossing is chosen. The cost of crossing the barrier is added to the accumulated travel time of the resulting route.
Full
Specifies how the restriction point barriers are applied to the edge elements during the analysis. The field value is specified as one of the following integers (use the numeric code, not the name in parentheses):
- 0 (False)—Permits travel on the edge up to the barrier but not through it. This is the default value.
- 1 (True)—Restricts travel anywhere on the associated edge.
Attr
Indicates how the cost (time or distance) is added when the barrier is traversed. This attribute is applicable only for added cost point barriers. The attribute value must be greater than or equal to zero.
Attr
is only referenced when the cost attribute referred to in the field name is used in the analysis as impedance or accumulate attribute.
See the list of cost attributes supported by the service.
Syntax examples for barriers
Syntax for specifying barriers using JSON structure for features
{
"spatialReference": {
"wkid": <wkid>,
"latestWkid": <wkid>
},
"features": [
{
"geometry": {
"x": <x>,
"y": <y>
},
"attributes": {
"<field1>": <value11>,
"<field2>": <value12>
}
},
{
"geometry": {
"x": <x>,
"y": <y>
},
"attributes": {
"<field1>": <value21>,
"<field2>": <value22>
}
}
],
"doNotLocateOnRestrictedElements": true | false
}
Syntax for specifying barriers using a URL to a JSON response
{
"url": "<url>"
"doNotLocateOnRestrictedElements": true | false
}
Examples for barriers
Example 1: Specify an added cost point barrier using JSON structure
This example shows how to use an added cost point barrier to model a five-minute delay at a railroad crossing. The Barrier
attribute is used to specify that the point barrier is of type added cost and the Attr
attribute is used to specify the delay in minutes.
{
"spatialReference": {
"wkid": 4326
},
"features": [
{
"geometry": {
"x": -122.053461,
"y": 37.541479
},
"attributes": {
"Name": "Haley St rail road crossing",
"BarrierType": 2,
"Attr_TravelTime": 5
}
}
]
}
Example 2: Specify a restriction point barrier using a URL
The URL makes a query for a few features from a map service. A URL querying features from a feature service can also be specified.
{
"url": "https://sampleserver3.arcgisonline.com/ArcGIS/rest/services/Network/USA/MapServer/0/query?where=1%3D1&returnGeometry=true&f=json"
}
polylineBarriers
Use this parameter to specify one or more lines that prohibit travel anywhere the lines intersect the streets. For example, a parade or protest that blocks traffic across several street segments can be modeled with a line barrier. A line barrier can also quickly fence off several roads from being traversed, thereby channeling possible routes away from undesirable parts of the street network.
The first map displays the shortest path between two stops. The second map shows the shortest path when several streets are blocked by a polyline barrier.
You can specify polyline barrier geometries as well as attributes using a JSON structure that references a set of features. The property is optional; however, the JSON structure must specify either the url
or features
property:
-
url
—Specify a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set.The JSON structure can include the following property:
do
(optional)—Specify whether the restricted network elements will be considered when finding network locations. The default isNot Locate On Restricted Elements true
.
-
features
—Specify an array of features.Each feature in this array represents a polyline barrier and contains the following fields:
-
geometry
—Specify the input point geometry containingx
andy
properties along with thespatial
property. If theReference spatial
property is defined for the entire JSON, you don't need to define this property for each geometry. Doing so reduces the size of the input JSON if the input has many features and improves performance. This property is not required if the coordinates are in the default spatial reference, WGS84. If the coordinates are in a different spatial reference, you must specify the spatial reference's well-known ID (WKID). See Using spatial references to look up WKID values.Reference -
attributes
—Specify each attribute as a key-value pair in which the key is the name of a given field, and the value is the attribute value for the corresponding field.
The JSON structure can include the following property:
do
(optional)—Specify whether the restricted network elements will be considered when finding network locations. The default isNot Locate On Restricted Elements true
.
-
Attributes for polylineBarriers
When specifying the polyline
parameter using JSON structure, the parameter can be specified with the following attribute:
Name
The name of the barrier.
Object
The object ID of the line barrier. Object
is a unique identifier for the line barrier. If you want to maintain a relationship between the input and output, set preserve
to true
. The Object
value of the input line barrier is included in the output line barrier (as the Object
field) and can be used to join additional information from analysis outputs to the attribute of the line barriers. If the Object
value is not specified, a unique ID is automatically generated in the output.
Syntax examples for polylineBarriers
Syntax for specifying polyline barriers using JSON structure for features
{
"spatialReference": {
"wkid": <wkid>,
"latestWkid": <wkid>
},
"features": [
{
"geometry": {
"paths": [
[
[<x11>,<y11>],
[<x12>,<y12>]
],
[
[<x21>,<y21>],
[<x22>,<y22>]
]
],
},
"attributes": {
"<field1>": <value11>,
"<field2>": <value12>
}
},
{
"geometry": {
"paths": [
[
[<x11>,<y11>],
[<x12>,<y12>]
],
[
[<x21>,<y21>],
[<x22>,<y22>]
]
]
},
"attributes": {
"<field1>": <value21>,
"<field2>": <value22>
}
}
],
"doNotLocateOnRestrictedElements": true | false
}
Syntax for specifying polyline barriers using a URL returning a JSON response
{
"url": "<url>"
"doNotLocateOnRestrictedElements": true | false
}
Examples for polylineBarriers
Example 1: Specify polyline barriers using JSON structure
This example shows how to add two lines as polyline barriers to restrict travel on the streets intersected by the lines. Barrier 1 is a single-part line feature composed of two points. Barrier 2 is a two-part line feature. The first part is composed of three points, and the second part is composed of two points.
{
"spatialReference": {
"wkid": 102100
},
"features": [
{
"geometry": {
"paths": [
[
[-10804823.397,3873688.372],
[-10804811.152,3873025.945]
]
]
},
"attributes": {
"Name": "Barrier 1"
}
},
{
"geometry": {
"paths": [
[
[-10804823.397,3873688.372],
[-10804807.813,3873290.911],
[-10804811.152,3873025.945]
],
[
[-10805032.678,3863358.76],
[-10805001.508,3862829.281]
]
]
},
"attributes": {
"Name": "Barrier 2"
}
}
]
}
Example 2: Specify a polyline barrier using a URL
The URL makes a query for a few features from a map service. A URL querying features from a feature service can also be specified.
{
"url": "https://sampleserver3.arcgisonline.com/ArcGIS/rest/services/Network/USA/MapServer/6/query?where=1%3D1&returnGeometry=true&f=json"
}
polygonBarriers
Use this parameter to specify polygons that either completely restrict travel or proportionately scale the time or distance required to travel on the streets intersected by the polygons.
You can specify polygon barrier geometries as well as attributes using a JSON structure that references a set of features. The JSON structure can be specified as a url
or features
value.
-
url
—Specify a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set.The JSON structure can include the following property:
do
(optional)—Specify whether the restricted network elements will be considered when finding network locations. The default isNot Locate On Restricted Elements true
.
-
features
—Specify an array of features.Each feature in this array represents a polygon barrier and contains the following fields:
-
geometry
—Specify the input point geometry containingx
andy
properties along with thespatial
property. If theReference spatial
property is defined for the entire JSON, you don't need to define this property for each geometry. Doing so reduces the size of the input JSON if the input has many features and improves performance. This property is not required if the coordinates are in the default spatial reference, WGS84. If the coordinates are in a different spatial reference, you must specify the spatial reference's well-known ID (WKID). See Using spatial references to look up WKID values.Reference -
attributes
—Specify each attribute as a key-value pair in which the key is the name of a given field, and the value is the attribute value for the corresponding field.
The JSON structure can include the following property:
do
(optional)—Specify whether the restricted network elements will be considered when finding network locations. The default isNot Locate On Restricted Elements true
.
-
Attributes for polygonBarriers
When specifying the polygon
parameter using JSON structure, you can specify additional information about barriers—such as the barrier type—using attributes. The polygon
parameter can be specified with the following attributes:
Name
The name of the barrier.
Object
The object ID of the polygon barrier. Object
is a unique identifier for the polygon barrier. If you want to maintain a relationship between the input and output, set preserve
to true
. The Object
value of the input polygon barrier is included in the output polygon barrier (as the Object
field) and can be used to join additional information from analysis outputs to the attribute of the polygon barriers. If the Object
value is not specified, a unique ID is automatically generated in the output.
Barrier
Use this parameter to specify polygons that either completely restrict travel or proportionately scale the time or distance required to travel on the streets intersected by the polygons.
-
0 (Restriction)—Prohibits traveling through any part of the barrier. The barrier is referred to as a restriction polygon barrier since it prohibits traveling on streets intersected by the barrier. One use of this type of barrier is to model floods covering areas of the street that make traveling on those streets impossible.
This is the default value.
The first map depicts the shortest path between two stops. The second map shows a polygon barrier blocking flooded streets, so the shortest path between the same two stops is different.
-
1 (Scaled Cost)—Scales the time or distance required to travel the underlying streets by a factor specified using the
Attr
,_Travel Time Attr
,_Miles Attr
,_Kilometers Attr
,_Minutes Attr
,_Walk Time Attr
, or_Truck Minutes Attr
attributes. If the streets are partially covered by the barrier, the travel time or distance is apportioned and then scaled. For example, a factor of 0.25 means that travel on underlying streets is expected to be four times faster than normal. A factor of 3.0 means that it is expected to take three times longer than normal to travel on underlying streets. This barrier type is referred to as a scaled cost polygon barrier. It can be used to model storms that reduce travel speeds in specific regions, for example._Truck Travel Time The first map shows a route that goes through inclement weather without regard for the effect that poor road conditions have on travel time. The second map shows a scaled polygon barrier that doubles the travel time of the roads covered by the storm. The route still passes through the southern tip of the storm, since it is quicker to spend more time driving slowly through a small part of the storm rather than driving completely around it. The service uses the modified travel time in calculating the best route, and the modified travel time is reported as the total travel time in the response.
Attr
This is the factor by which the cost of the streets intersected by the barrier is multiplied. This attribute is applicable only for scaled cost barriers. The attribute value must be greater than zero.
Attr
is only referenced when it is used in the analysis as impedance or accumulate attribute.
Syntax examples for polygonBarriers
Syntax for specifying polygon barriers using JSON structure for features
{
"spatialReference": {
"wkid": <wkid>,
"latestWkid": <wkid>
},
"features": [
{
"geometry": {
"rings": [
[
[<x11>,<y11>],
[<x12>,<y12>],
[<x11>,<y11>]
],
[
[<x21>,<y21>],
[<x22>,<y22>],
[<x21>,<y21>]
]
]
},
"attributes": {
"<field1>": <value11>,
"<field2>": <value12>
}
},
{
"geometry": {
"rings": [
[
[<x11>,<y11>],
[<x12>,<y12>],
[<x11>,<y11>]
],
[
[<x21>,<y21>],
[<x22>,<y22>],
[<x21>,<y21>]
]
]
},
"attributes": {
"<field1>": <value21>,
"<field2>": <value22>
}
}
],
"doNotLocateOnRestrictedElements": true | false
}
Syntax for specifying polygon barriers using a URL returning a JSON response
{
"url": "<url>"
"doNotLocateOnRestrictedElements": true | false
}
Examples for polygonBarriers
Example 1: Specify a polygon barrier using JSON structure
This example shows how to add two polygons as barriers. The first polygon, Flood zone, is a restriction polygon barrier that prohibits travel on the underlying streets. The polygon is a single-part polygon feature composed of four points. The second polygon, Severe weather zone, is a scaled-cost polygon barrier that reduces the travel time on underlying streets to one-third of the original value. The polygon is a two-part polygon feature. Both parts are composed of four points.
{
"spatialReference": {
"wkid": 4326
},
"features": [
{
"geometry": {
"rings": [
[
[-97.0634,32.8442],
[-97.0554,32.84],
[-97.0558,32.8327],
[-97.0638,32.83],
[-97.0634,32.8442]
]
]
},
"attributes": {
"Name": "Flood zone",
"BarrierType": 0
}
},
{
"geometry": {
"rings": [
[
[-97.0803,32.8235],
[-97.0776,32.8277],
[-97.074,32.8254],
[-97.0767,32.8227],
[-97.0803,32.8235]
],
[
[-97.0871,32.8311],
[-97.0831,32.8292],
[-97.0853,32.8259],
[-97.0892,32.8279],
[-97.0871,32.8311]
]
]
},
"attributes": {
"Name": "Severe weather zone",
"BarrierType": 1,
"Attr_TravelTime": 3
}
}
]
}
Example 2: Specify a polygon barrier using a URL
The URL makes a query for a few features from a map service. A URL querying features from a feature service can also be specified.
{
"url": "https://sampleserver3.arcgisonline.com/ArcGIS/rest/services/Network/USA/MapServer/7/query?where=1%3D1&returnGeometry=true&f=json"
}
returnOrigins
Use this parameter to specify whether origins will be returned by the service. The possible values for this parameter are true
or false
. A true
value indicates that the origins used as input will be returned as part of the origins
property in the JSON response. The default value for this parameter is false
.
returnDestinations
Use this parameter to specify whether destinations will be returned by the service. The possible values for this parameter are true
or false
. A true
value indicates that the destinations used as input will be returned as part of the destinations
property in the JSON response. The default value for this parameter is false
.
returnBarriers
Specify whether barriers will be returned by the service.
true
—The input point barriers are returned as part of thebarriers
property in the JSON response.false
—Point barriers are not returned. This is the default.
For this parameter to take effect, you must also specify a value for the barriers
parameter.
If you specified the barriers
parameter value using a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set, you can set the return
parameter to true
so you can draw the point barrier locations in the application. You can also set the return
property to true
to see where the barriers were located on the street network or, if they weren't located, understand what the problem was by reviewing the Status
property in the JSON response.
returnPolylineBarriers
Specify whether polyline barriers will be returned by the service.
true
—The input polyline barriers are returned as part of thepolyline
property in the JSON response.Barriers false
—Polyline barriers are not returned. This is the default.
For this parameter to take effect, you must also specify a value for the polyline
parameter.
If you specified the polyline
parameter value using a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set, you can set the return
parameter to true
so you can draw the polyline barrier locations in the application.
returnPolygonBarriers
Specify whether polygon barriers will be returned by the service.
true
—The input polygon barriers are returned as part of thepolygon
property in the JSON response.Barriers false
—Polygon barriers are not returned. This is the default.
For this parameter to take effect, you must also specify a value for the polygon
parameter.
If you specified the polygon
parameter value using a REST query request to any ArcGIS Server feature, map, or geoprocessing service that returns a JSON feature set, you can set the return
parameter to true
so you can draw the polygon barrier locations in the application.
geometryPrecision
Use this parameter to specify the number of decimal places that will be used in the response geometries returned by the solve operation. This applies to x- and y-values only (not m- or z-values).
geometryPrecision = 3
ignoreInvalidLocations
Specifies whether invalid input locations will be ignored.
-
true
—Network locations that are unlocated will be ignored and the analysis will run using valid network locations only. The analysis will also continue if locations are on nontraversable elements or have other errors. This is useful if you know the network locations are not all correct, but you want to run the analysis with the network locations that are valid. This is the default.
-
false
—Invalid locations will not be ignored. Do not run the analysis if there are invalid locations. Correct the invalid locations and rerun the analysis.
The default value is true
.
outSR
Use this parameter to specify the spatial reference of the geometries, such as line or point features, returned by the service.
The parameter value can be specified as a well-known ID (WKID) for the spatial reference. See Using spatial references to look up WKID values.
Many of the basemaps provided by ArcGIS Online are in the Web Mercator spatial reference (WKID 102100). Specifying out
returns the geometries in the Web Mercator spatial reference, which can be drawn on top of the basemaps.
overrides
returnEmptyResults
Specify whether the service will return empty results instead of the error property when the request fails.
true
—The JSON response doesn't contain the error property when the request fails. All errors are returned in the messages property. The response JSON may contain an empty feature set or empty result for the properties you requested.false
—The JSON response only contains the error property when the request fails.
The default value is false
.
Typically when a request fails, the service will return a JSON response that contains the error property. In some cases, you might want to set return
to true
so it always returns properties you requested instead of returning an error response to help handle the response in a more consistent way.
Even if the request fails, when you set return
, return
, and return
, you can return origins and destinations to investigate why some of them failed to locate.
locateSettings
Use this parameter to specify settings that affect how inputs are located, such as the maximum search distance to use when locating the inputs on the network or the network sources being used for locating.
Learn more about locating inputs
The parameter value is specified as a JSON object. The JSON object allows you to specify a locator JSON for all input feature in the analysis, or you can specify an override for a particular input. The override allows you to have different settings for each analysis input. When specifying the locate
JSON, you must provide all the properties including tolerance
, tolerance
, sources
, and allow
in the default locator JSON object. If you need to provide a different locator JSON for a particular input class, you must include the overrides property for that input. The property name must match the input parameter name. The locator JSON for a particular input doesn't need to include all the properties; you only need to include the properties that are different from the default locator JSON properties.
The default value is as follows:
{
"default": {
"tolerance": 20000,
"toleranceUnits": "esriMeters",
"allowAutoRelocate": true,
"sources": [
{
"name": "main.Routing_Streets"
}
]
}
}
The locator JSON object has following properties:
-
tolerance
andtolerance
—Allows you to control the maximum search distance when locating inputs. If no valid network location is found within this distance, the input features will be considered unlocated. A small search tolerance decreases the likelihood of locating on the wrong street but increases the likelihood of not finding any valid network location. TheUnits tolerance
parameter value can be specified as one of the following values:Units esri
Centimeters esri
Decimal Degrees esri
Decimeters esri
Feet esri
Inches esri
Int Feet esri
Int Inches esri
Int Miles esri
Int Nautical Miles esri
Int Yards esri
Kilometers esri
Meters esri
Miles esri
Millimeters esri
Nautical Miles esri
Yards
-
sources
— Allows you to control which network source can be used for locating. For example, you can configure the analysis to locate inputs on streets but not on sidewalks. The list of possible sources on which to locate is specific to the network dataset this service references. Only the sources that are present in the sources array are used for locating. Sources is specified as an array of objects each having the following property:name
—The name of the network source feature class that can be used for locating inputs
-
allow
—Allows you to control whether inputs with existing network location fields can be automatically relocated when solving to ensure valid, routable location fields for the analysis. If the value isAuto Relocate true
, points located on restricted network elements and points affected by barriers will be relocated to the closest routable location. If the value isfalse
, network location fields will be used as is even if the points are unreachable, and this may cause the solve to fail. Even if the value isfalse
, inputs with no location fields or incomplete location fields will be located during the solve operation.
Syntax for locateSettings
Syntax for specifying locate
using JSON structure
{
"default": {
"tolerance": <value>,
"toleranceUnits": "<unit>",
"allowAutoRelocate": true | false,
"sources": [
{
"name": "<sourceName>"
}
]
},
"overrides": {
"origins": {
"tolerance": <value>,
"toleranceUnits": "<unit>",
"allowAutoRelocate": true | false,
"sources": [
{
"name": "<sourceName>"
}
]
},
"destinations": {
"tolerance": <value>,
"toleranceUnits": "<unit>",
"allowAutoRelocate": true | false,
"sources": [
{
"name": "<sourceName>"
}
]
},
"barriers": {
"tolerance": <value>,
"toleranceUnits": "<unit>",
"allowAutoRelocate": true | false,
"sources": [
{
"name": "<sourceName>"
}
]
},
"polylineBarriers": {
"allowAutoRelocate": true | false,
"sources": [
{
"name": "<sourceName>"
}
]
},
"polygonBarriers": {
"allowAutoRelocate": true | false,
"sources": [
{
"name": "<sourceName>"
}
]
}
}
}
Example for locateSettings
Example 1: Specify default locate settings using JSON structure
This example shows how to specify locate settings so inputs are located within 500 meters of the specified location. A small search tolerance like this can be valuable if you are solving using a walking travel mode and don't want inputs to be located farther than 500 meters from the original point location.
{
"default": {
"tolerance": 500,
"toleranceUnits": "esriMeters",
"allowAutoRelocate": true,
"sources": [
{
"name": "main.Routing_Streets"
}
]
}
}
Output parameters
The service returns the travel time or distance for each origin-destination pair. It returns either od
or od
for this information depending on the output
you specify. The service can also return the output origins, the output destinations, the output barriers, the output polygon barriers, and the output polyline barriers if you choose to return them. It also returns the status of whether the analysis was successful. This information is output in the following output parameters:
odLines
When the output
is esri
or esri
, the output will be od
. The od
output include geometry for the straight line connecting each origin-destination pairs when the output
is esri
.
Field | Description |
---|---|
| The system-managed ID field. |
| The name of the corresponding input origin and destination feature. The origin name is first and the destination name is second. For example, Origin 1 – Destination 1. If the name is not specified for origin and or destination, a unique name prefixed with Location is automatically generated for that origin/destination. |
| The |
| The |
| The rank of the destination among all destinations found for the associated origin. The destination that is closest to the origin has a rank of 1. |
| The travel cost along the street network from the associated origin to the associated destination. These fields are populated for the impedance attribute and any accumulated attributes. |
odCostMatrix
When the output
is esri
, the output is a JSON object that contains an array identified by cost
to know what cost attributes are in the matrix and in what index. It then has an associative array of origins (identified by their ObjectID) each of which has an associative array of destinations (identified by their ObjectID) containing an array of costs that are in the same order as the cost
array.
In the example below, Travel
is the impedance attribute; and Miles
and Kilometers
are the accumulate attributes used in the analysis. In the returned matrix that contains the time and distance between origin-destination pair, each nested JSON is composed of origin ObjectID, destination ObjectID, and the costs from origin to destination in the order defined in the cost
. In the example below, travel from origin ObjectID 1 to destination ObjectID 1 takes 62.88 miles.
"odCostMatrix": {
"costAttributeNames": [
"TravelTime",
"Miles",
"Kilometers"
],
"1": {
"1": [
78.61,
62.88,
101.20
]
}
}
origins
Access the origins that participated in the analysis. It provides information about origins that could not be included in the analysis.
The following table describes the attributes of the output origins:
Field | Description |
---|---|
| The object ID of the input origin. If ObjectID is not specified, it will be system generated ID for the origin. |
| The name of the origin. If the name of the origin was specified as part of the |
| The value of the |
| The numeric identifier of the network dataset source feature class on which the input point is located. |
| The ObjectID of the feature in the source on which the input point is located. |
| The position along the digitized direction of the source line feature. This value is stored as a ratio. This field is null if the network location references a junction. For example, a value of 0.47 indicates that the point is positioned 47 percent from the start of the source line feature. |
| The side of the edge in relation to the digitized direction of the line feature. This field is limited to a domain of two values: Right Side (1) and Left Side (2). |
| The value of the |
| Indicates the status of the point with respect to its location on the network and the outcome of the analysis. The possible values are the following:
|
| The x-coordinate of the position on the network dataset where the point was located, in the coordinate system of the network dataset. |
| The y-coordinate of the position on the network dataset where the point was located, in the coordinate system of the network dataset. |
| The z-coordinate of the position on the network dataset where the point was located, in the coordinate system of the network dataset. The |
| The distance in meters between the point's geographic location and the position where it was located on the network. |
| The value of the cutoff field in the corresponding input origins. |
destinations
Access the destinations that participated in the analysis. It provides information about destinations that could not be included in the analysis as well as the total number of origins that were able to reach a given destination.
The following table describes the attributes of the output destinations:
Field | Description |
---|---|
| The object ID of the input destination. If ObjectID is not specified, it will be system generated ID for the destination. |
| The name of the destination. If the name for the origin was specified as part of the |
| The numeric identifier of the network dataset source feature class on which the input point is located. |
| The ObjectID of the feature in the source on which the input point is located. |
| The position along the digitized direction of the source line feature. This value is stored as a ratio. This field is null if the network location references a junction. For example, a value of 0.47 indicates that the point is positioned 47 percent from the start of the source line feature. |
| The side of the edge in relation to the digitized direction of the line feature. This field is limited to a domain of two values: Right Side (1) and Left Side (2). |
| The value of the |
| Indicates the status of the point with respect to its location on the network and the outcome of the analysis. The possible values are the following:
|
| The x-coordinate of the position on the network dataset where the point was located, in the coordinate system of the network dataset. |
| The y-coordinate of the position on the network dataset where the point was located, in the coordinate system of the network dataset. |
| The z-coordinate of the position on the network dataset where the point was located, in the coordinate system of the network dataset. The |
| The distance in meters between the point's geographic location and the position where it was located on the network. |
barriers
This provides access to points that act as temporary restrictions or represent additional time or distance that may be required to travel on the underlying streets.
Field name | Description |
---|---|
| The object ID of the associated input barrier. If ObjectID is not specified, it will be system generated ID for the barrier. |
| The name of the barrier. |
| The numeric identifier of the network dataset source feature class on which the input point is located. |
| The ObjectID of the feature in the source on which the input point is located. |
| The position along the digitized direction of the source line feature. This value is stored as a ratio. This field is null if the network location references a junction. For example, a value of 0.47 indicates that the point is positioned 47 percent from the start of the source line feature. |
| The side of the edge in relation to the digitized direction of the line feature. This field is limited to a domain of two values: Right Side (1) and Left Side (2). |
| The direction of traffic that is affected by the barrier. The field value is specified as one of the following integers (use the numeric code, not the name in parentheses):
|
| Indicates how the barrier was evaluated in the analysis. The possible values are the following:
|
| Point barriers are applied to the edge elements during the analysis. The field value is specified as one of the following integers (use the numeric code, not the name in parentheses):
|
| Specify if the point barrier restricts travel completely or adds time or distance when it is crossed. The value for this attribute is specified as one of the following integers (use the numeric code, not the name in parentheses):
|
(for instance | This property is specific to added-cost barriers and is limited to values that are greater than or equal to zero. It indicates how much cost is added when the barrier is traversed. |
polylineBarriers
This parameter provides access to one or more lines that prohibit travel anywhere the lines intersect the streets.
Field name | Description |
---|---|
| The object ID of the associated input polyline barrier. If the |
| The name of the barrier. |
| Specify whether the barrier restricts travel completely or scales time or distance when it is crossed. The value for this attribute is specified as one of the following integers (use the numeric code, not the name in parentheses):
|
(for example, | This attribute is specific to scaled-cost barriers. It is the factor by which the cost of edges underlying the barrier are multiplied. |
polygonBarriers
This parameter provides access to polygons that either completely restrict travel or proportionately scale the time or distance required to travel on the streets intersected by the polygons.
Field name | Description |
---|---|
| The object ID of the associated input polygon barrier. If the |
| The name of the barrier. |
| Specify whether the barrier restricts travel completely or scales time or distance when it is crossed. The value for this attribute is specified as one of the following integers (use the numeric code, not the name in parentheses):
|
(for example, | This attribute is specific to scaled-cost barriers. It is the factor by which the cost of edges underlying the barrier are multiplied. |
Examples
Calculate total travel time and distance between two cities
This example shows how to calculate total travel time and distance between two cities (San Diego and Los Angeles), a typical travel cost matrix problem.
Specify the same two cities as the origins and destinations parameter to get travel time and distance traveling between these two cities. Use the JSON structure to specify the origins and destinations parameter, to specify the Name
and Object
of the cities that will be included in the service output.
Request URL
|
JSON response example
The default output
is esri
, so the response is a matrix format. The default impedance
is Travel
, and the default accumulate
are Miles
and Kilometers
in the example below. The response contains the travel time, travel distance in miles, and travel distance in kilometers between San Diego and Los Angeles. Within the od
property, each nested JSON is composed of origin ObjectID, destination ObjectID, and the costs from origin to destination in the order defined in the cost
.
{
"messages": [],
"odCostMatrix": {
"costAttributeNames": [
"TravelTime",
"Miles",
"Kilometers"
]
"1": {
"1": [
0,
0,
0
],
"2": [
157.0376430630198,
124.20114191467465,
199.88236253353011
]
},
"2": {
"1": [
158.82792954092292,
124.16291635554705,
199.82084445930158
],
"2": [
0,
0,
0
]
},
}
}
JSON response syntax
The JSON response from the Travel cost matrix service is based on the following syntax when output
is esri
. The properties returned in the response are based on the request parameters. For example, the origins property is returned only if the return
parameter is set to true
. If a request fails, the JSON response only contains the error property. The examples in the subsequent section illustrate the response returned with specific request parameters.
JSON Response syntax for successful request
{
"odCostMatrix": {
"costAttributeNames": [
"<costAttribute1>",
"<costAttribute2>"
]
"<OriginID1>": {
"<DestinationID1>": [
<costAttribute1Value1>,
<costAttribute2Value1>
],
"<DestinationID2>": [
<costAttribute1Value2>,
<costAttribute2Value2>
]
},
"<OriginID2>": {
"<DestinationID1>": [
<costAttribute1Value3>,
<costAttribute2Value3>
],
"<DestinationID2>": [
<costAttribute1Value4>,
<costAttribute2Value4>
]
}
},
"origins": {
"spatialReference": {<spatialReference>},
"features": [
{
"attributes": {
"<field1>": <value11>,
"<field2>": <value12>
},
"geometry": {<point1>}
},
{
"attributes": {
"<field1>": <value21>,
"<field2>": <value22>
},
"geometry": {<point2>}
}
]
},
"destinations": {
"spatialReference": {<spatialReference>},
"features": [
{
"attributes": {
"<field1>": <value11>,
"<field2>": <value12>
},
"geometry": {<point1>}
},
{
"attributes": {
"<field1>": <value21>,
"<field2>": <value22>
},
"geometry": {<point2>}
}
]
},
"barriers": {
"spatialReference": {<spatialReference>},
"features": [
{
"attributes": {
"<field1>": <value11>,
"<field2>": <value12>
},
"geometry": {<point1>}
},
{
"attributes": {
"<field1>": <value21>,
"<field2>": <value22>
},
"geometry": {<point2>}
}
]
},
"polylineBarriers": {
"spatialReference": {<spatialReference>},
"features": [
{
"attributes": {
"<field1>": <value11>,
"<field2>": <value12>
},
"geometry": {<polyline1>}
},
{
"attributes": {
"<field1>": <value21>,
"<field2>": <value22>
},
"geometry": {<polyline2>}
}
]
},
"polygonBarriers": {
"spatialReference": {<spatialReference>},
"features": [
{
"attributes": {
"<field1>": <value11>,
"<field2>": <value12>
},
"geometry": {<polygon1>}
},
{
"attributes": {
"<field1>": <value21>,
"<field2>": <value22>
},
"geometry": {<polygon2>}
}
]
}
}
"messages": [
{
"type": <type1>,//...type can have two values. 0 indicates it is an informative message, and 50 indicates it is a warning message.
"description": <description1>
},
{
"type": <type2>,
"description": <description2>
},
//....additional messages
]
}
JSON response syntax for failed request
When output
is esri
or esri
, the JSON response from the Travel cost matrix service includes the od
property.
See Error codes for details about the extended code.
JSON Response syntax for successful request when outputType is esriNAODOutputStraightLines
When the output
is esri
, the od
property includes geometry property for each feature.
{
"odLines": {
"spatialReference": {<spatialReference>},
"features": [
{
"attributes": {
"<field1>": <value11>,
"<field2>": <value12>
},
"geometry": {<polyline1>}
},
{
"attributes": {
"<field1>": <value21>,
"<field2>": <value22>
},
"geometry": {<polyline2>}
}
]
}
}
JSON Response syntax for successful request when outputType is esriNAODOutputNoLines
When output
is esri
, the od
property doesn't include geometry property for each feature.
{
"odLines": {
"spatialReference": {<spatialReference>},
"features": [
{
"attributes": {
"<field1>": <value11>,
"<field2>": <value12>
}
},
{
"attributes": {
"<field1>": <value21>,
"<field2>": <value22>
}
}
]
}
}
Usage limits
The table below lists the limits that apply to this service.
Limit description | Limit value |
---|---|
Maximum number of origins | 10 |
Maximum number of destinations | 10 |
Maximum number of (point) barriers | 250 |
Maximum number of street features intersected by polyline barriers | 500 |
Maximum number of street features intersected by polygon barriers | 2,000 |
Force hierarchy beyond a straight-line distance of (If the straight-line distance between any facility and demand point is greater than the limit shown here, the analysis uses hierarchy, even if useHierarchy is set to false.) | 50 miles (80.46 kilometers) |
Maximum straight-line distance for the walking travel mode: (If the straight-line distance between any incidents or facilities is greater than this limit, the analysis will fail when the walking restriction is used.) | 27 miles(43.45 kilometers) |
Maximum time a client can use the direct request | 5 minutes (300 seconds) |