Classify Objects Using Deep Learning

URL:
https://<rasteranalysis-url>/ClassifyObjectsUsingDeepLearning
Methods:
GET
Version Introduced:
10.8

Description

Classify Objects Using Deep Learning diagram

The ClassifyObjectsUsingDeepLearning task is used to classify objects based on overlaid imagery data using the designated deep learning model and generate a feature service with a new assigned label for each object.

Request parameters

ParameterDetails

inputRaster

(Required)

The input image used to classify objects. This can be specified as the portal item ID, image service URL, cloud raster dataset, shared raster dataset, a feature service with image attachments, or a raster dataset or image collection in the data store. At least one type of input must be provided in the JSON object. If multiple inputs are provided, the itemId value takes priority.

Syntax: A JSON object describes the input raster.

Example:

Use dark colors for code blocksCopy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
//Portal Item ID
inputRaster={"itemId": <portal item id>}

//Image Service URL
inputRaster={"url": <image service url>}

//Feature Service URL
inputRaster={"url": <feature service url>}

//URI for a cloud raster or shared data path
inputRaster={"uri": <cloud raster uri or shared data path>}

//Service Properties
inputRaster={"serviceProperties":{"name":" testrasteranalysis ","serviceUrl":"https://<server name>/server/rest/services/Hosted/testrasteranalysis /ImageServer"},"itemProperties":{"itemId":"8cfbd3ec25584d0d8f4ed23b8ff7c43b", "folderId":"sdfwerfbd3ec25584d0d8f4"}}

//Data store URI
inputRaster={"uri":"/rasterStores/rasterstorename/A/B/C"}
or
inputRaster={"uri":"/fileShares/filesharedatastorename/A/B/C"}
or
inputRaster={"uri":"/cloudStores/cloudstorename/A/B/C"}

inputFeatures

(Optional)

The feature service layer that contains the points, polylines, or polygons that identify the location of each object to be classified and labeled. The layer index is needed for the feature service URL.

Syntax: A JSON object describes the input feature service layer.

Example:

Use dark colors for code blocksCopy
1
2
3
4
5
6
7
8
//Feature Service Layer URL
inputFeatures={"url": <feature service layer url>}

//Shared Data Path
inputFeatures={"uri": <shared data path>}

//Service Properties
inputFeatures={"serviceProperties":{"name":"testrasteranalysis","serviceUrl":"https://<server name>/server/rest/services/Hosted/testrasteranalysis/FeatureServer/0"},"itemProperties":{"itemId":"8cfbd3ec25584d0d8f4ed23b8ff7c43b","folderId":"sdfwerfbd3ec25584d0d8f4"}}

Example

Use dark colors for code blocksCopy
1
inputFeatures={"url": "https://myserver/arcgis/rest/services/Hosted/testrasteranalysis/FeatureServer/0}

outputFeatureClass

(Required)

The output hosted feature service properties. If you're using an existing hosted feature service, the portal item ID or service URL can be provided, and the output path of the feature class that is generated will be used to update the existing service definition. The service tool can also generate a new hosted feature service with the service properties provided.

The output hosted feature service is stored and shared on the hosting server.

Syntax: A JSON object describes the output feature service.

Example:

Use dark colors for code blocksCopy
1
2
3
4
5
6
7
8
9
10
11
//Portal Item ID
outputFeatureClass={"itemId": <portal item id>}

//Hosted Feature Service URL
outputFeatureClass={"url": <hosted feature service url>}

//Feature Class Local Output Path
outputFeatureClass={"uri": <feature class local output path>}

//Service Properties
outputFeatureClass={"serviceProperties":{"name":"testrasteranalysis","serviceUrl":"https://<server name>/server/rest/services/Hosted/testrasteranalysis/FeatureServer"},"itemProperties":{"itemId":"8cfbd3ec25584d0d8fed23b8ff7c43b","folderId":"sdfwerfbd3ec25584d0d8f4"}}

model

(Required)

The deep learning model used to classify objects. This can be specified as the deep learning model portal item ID, as an .emd or .dlpk file, or as the entire JSON string of the model definition.

Syntax: A JSON object describes the model.

Example:

Use dark colors for code blocksCopy
1
2
3
4
5
6
7
8
9
10
11
12
13
//Portal Item
model={"itemId": "x2u130909jcvojzkeeraedf"}
model={"url": "https://<portal name>/portal/sharing/rest/content/items/x2u130909jcvojzkeeraedf"}

//.emd or .dlpk file
model={"uri": "\\\\sharedstorage\\sharefolder\\ClassifyHouseDamage.emd"}
model={"uri": "\\\\sharedstorage\\sharefolder\\ClassifyHouseDamage.dlpk"}
model={"uri": "/rasterStores/rasterstorename/A/B/ClassifyHouseDamage.emd"}
model={"uri": "/rasterStores/rasterstorename/A/B/ClassifyHouseDamage.dlpk"}

//.emd or .dlpk file stored in raster store with file share type
model = {"uri": "/fileShares/filesharedatastorename/A/B/ClassifyHouseDamage.emd"}
model={"uri": "/fileShares/filesharedatastorename/A/B/model.dlpk"}

Example for JSON:

Use dark colors for code blocksCopy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
model={
  "Framework": "Keras",
  "ModelConfiguration": {
    "Name": "KerasClassifier"
  },
  "ModelFile": "Damage_Classification_Model.h5",
  "ModelType": "ObjectClassification",
  "ImageHeight": 256,
  "ImageWidth": 256,
  "ExtractBands": [
    0,
    1,
    2
  ],
  "CropSizeFixed": 1,
  "BlackenAroundFeature": 1,
  "ImageSpaceUsed": "MAP_SPACE",
  "Classes": [
    {
      "Value": 0,
      "Name": "undamaged",
      "Color": [
        255,
        255,
        0
      ]
    },
    {
      "Value": 1,
      "Name": "damaged",
      "Color": [
        0,
        255,
        255
      ]
    }
  ]
}

modelArguments

(Optional)

The name of the value pairs of arguments and their values that can be customized by the clients.

Syntax: A JSON object describes the value pairs of arguments.

Example:

Use dark colors for code blocksCopy
1
modelArguments={"name1": "value1", "name2": "value2"}

classLabelField

(Optional)

The name of the field that will contain the classification label in the output feature service.

Syntax: String.

Example:

Use dark colors for code blocksCopy
1
classLabelField="ClassLabel"

processAllRasterItems

(Optional)

Specifies how all raster items in an image service will be processed. If set to true , all raster items in the image service will be processed as separate images. If set to false , all raster items in the image service will be mosaicked together and processed. This is the default.

Values: true | false

Example:

Use dark colors for code blocksCopy
1
processAllRasterItems=false

context

(Optional)

The environment settings that affect task execution. This task has the following settings:

  • Cell Size (cellSize)—The output raster will have the resolution specified by cell size.

  • Extent (extent)—A bounding box that defines the analysis area.

  • Parallel Processing Factor (parallelProcessingFactor )—The specified number or percentage of processes will be used for the analysis.

  • Processor Type(processorType )—Processing will occur using the server computer CPU or GPU.

Example

Use dark colors for code blocksCopy
1
context={"cellSize": "20", "processorType": "CPU", "parallelProcessingFactor": "4"}

f

The response format. The default response format is html.

Values: html | json

Example usage

The following is a sample request URL for ClassifyObjectsUsingDeepLearning :

Use dark colors for code blocksCopy
1
2
https://machine.domain.com/webadaptor/rest/services/System/RasterAnalysisTools/GPServer/ClassifyObjectsUsingDeepLearning?
inputRaster="url":"https://<server name>/arcgis/ArcGIS/rest/services/World_Imagery/MapServer"&inputFeatures="url":"https://<server name>/arcgis/server/rest/services/Hosted/test_parkinglot/FeatureServer/0"&outputFeatureClass={"serviceProperties":{"name":"test10210453"}}&model={"itemId": "d8d3902b41854529a907ad9f42af5a06"}&modelArguments={"padding": "0", "batch_size": "16"}&classLabelField=ClassLabel&processAllRasterItems=false&context={"extent": {"xmin": -13160539.4563053,"ymin": 3998752.62631951,"xmax": -13160427.5538234,"ymax": 3998824.51069532,"spatialReference": {"wkid": 3857}},"processorType": "CPU","parallelProcessingFactor": 2}}&f=json

The following is a sample POST request for ClassifyObjectsUsingDeepLearning :

Use dark colors for code blocksCopy
1
2
3
4
5
6
7
POST /webadaptor/rest/services/System/RasterAnalysisTools/GPServer/ClassifyObjectsUsingDeepLearning HTTP/1.1
Host: machine.domain.com
Content-Type: application/x-www-form-urlencoded
Content-Length: []

inputRaster={"url":"https://services.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer"}&inputFeatures={"url":"https://<server name>/arcgis/server/rest/services/Hosted/test_parkinglot/FeatureServer/0"}&outputFeatureClass={"serviceProperties": {"name":"test10210453"}}&model={"itemId": "d8d3902b41854529a907ad9f42af5a06"}modelArguments={"padding": "0", "batch_size": "16"
}classLabelField=ClassLabel&processAllRasterItems=false&context={"extent": {"xmin": -13160539.4563053,"ymin": 3998752.62631951,"xmax": -13160427.5538234,"ymax": 3998824.51069532,"spatialReference": {"wkid": 3857}},"processorType": "CPU", "parallelProcessingFactor": 2}}&f=json

Both of the requests above use the following parameters and values in their request:

Use dark colors for code blocksCopy
1
2
3
4
5
6
7
8
9
inputRaster={"url":"https://services.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer"}
iputFeatures={"url":"https://<server name>/arcgis/server/rest/services/Hosted/test_parkinglot/FeatureServer/0"}
outputFeatureClass={"serviceProperties":{"name":"test10210453"}}
model={"itemId": " d8d3902b41854529a907ad9f42af5a06"}
modelArguments={"padding": "0", "batch_size": "16"}
classLabelField=ClassLabel
processAllRasterItems=false
context={"extent": {"xmin": -13160539.4563053,"ymin": 3998752.62631951,"xmax": -13160427.5538234,"ymax": 3998824.51069532,"spatialReference": {"wkid": 3857}}, "processorType": "CPU", "parallelProcessingFactor": 2}}
f=json

Response

When you submit a request, the task assigns a unique job ID for the transaction.

Syntax:

Use dark colors for code blocksCopy
1
{ "jobId": "<unique job identifier>", "jobStatus": "<job status>" }

After the initial request is submitted, you can use the jobId to periodically check the status of the job and messages, as described in Check job status. Once the job has successfully completed, use the jobId to retrieve the results. To track the status, you can make a request of the following form:

Use dark colors for code blocksCopy
1
https://<rasterAnalysisTools-url>/AddImage/jobs/<jobId>

When the status of the job request is esriJobSucceeded , you can access the results of the analysis by making a request of the following form:

Use dark colors for code blocksCopy
1
https://<rasterAnalysisTools-url>/AddImage/jobs/<jobId>/results/outObjects

JSON Response example

The response returns the outObjects output parameter, which has properties for parameter name, data type, and value. The content of value is always the output feature layer item ID and the image service URL.

Use dark colors for code blocksCopy
1
2
3
4
5
6
7
8
{
  "paramName": "outObjects",
  "dataType": "GPFeatureRecordSetLayer",
  "value": {
    "itemId": "f121390b85ef419790479fc75b493efd",
    "url": "https://<server name>/arcgis/rest/services/Hosted/<service name>/FeatureServer"
  }
}

Your browser is no longer supported. Please upgrade your browser for the best experience. See our browser deprecation post for more details.